1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/sched/debug.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/user.h> 35 #include <linux/delay.h> 36 #include <linux/reboot.h> 37 #include <linux/interrupt.h> 38 #include <linux/kallsyms.h> 39 #include <linux/init.h> 40 #include <linux/cpu.h> 41 #include <linux/elfcore.h> 42 #include <linux/pm.h> 43 #include <linux/tick.h> 44 #include <linux/utsname.h> 45 #include <linux/uaccess.h> 46 #include <linux/random.h> 47 #include <linux/hw_breakpoint.h> 48 #include <linux/personality.h> 49 #include <linux/notifier.h> 50 #include <trace/events/power.h> 51 #include <linux/percpu.h> 52 53 #include <asm/alternative.h> 54 #include <asm/compat.h> 55 #include <asm/cacheflush.h> 56 #include <asm/exec.h> 57 #include <asm/fpsimd.h> 58 #include <asm/mmu_context.h> 59 #include <asm/processor.h> 60 #include <asm/stacktrace.h> 61 62 #ifdef CONFIG_CC_STACKPROTECTOR 63 #include <linux/stackprotector.h> 64 unsigned long __stack_chk_guard __read_mostly; 65 EXPORT_SYMBOL(__stack_chk_guard); 66 #endif 67 68 /* 69 * Function pointers to optional machine specific functions 70 */ 71 void (*pm_power_off)(void); 72 EXPORT_SYMBOL_GPL(pm_power_off); 73 74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 75 76 /* 77 * This is our default idle handler. 78 */ 79 void arch_cpu_idle(void) 80 { 81 /* 82 * This should do all the clock switching and wait for interrupt 83 * tricks 84 */ 85 trace_cpu_idle_rcuidle(1, smp_processor_id()); 86 cpu_do_idle(); 87 local_irq_enable(); 88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 89 } 90 91 #ifdef CONFIG_HOTPLUG_CPU 92 void arch_cpu_idle_dead(void) 93 { 94 cpu_die(); 95 } 96 #endif 97 98 /* 99 * Called by kexec, immediately prior to machine_kexec(). 100 * 101 * This must completely disable all secondary CPUs; simply causing those CPUs 102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 103 * kexec'd kernel to use any and all RAM as it sees fit, without having to 104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 105 * functionality embodied in disable_nonboot_cpus() to achieve this. 106 */ 107 void machine_shutdown(void) 108 { 109 disable_nonboot_cpus(); 110 } 111 112 /* 113 * Halting simply requires that the secondary CPUs stop performing any 114 * activity (executing tasks, handling interrupts). smp_send_stop() 115 * achieves this. 116 */ 117 void machine_halt(void) 118 { 119 local_irq_disable(); 120 smp_send_stop(); 121 while (1); 122 } 123 124 /* 125 * Power-off simply requires that the secondary CPUs stop performing any 126 * activity (executing tasks, handling interrupts). smp_send_stop() 127 * achieves this. When the system power is turned off, it will take all CPUs 128 * with it. 129 */ 130 void machine_power_off(void) 131 { 132 local_irq_disable(); 133 smp_send_stop(); 134 if (pm_power_off) 135 pm_power_off(); 136 } 137 138 /* 139 * Restart requires that the secondary CPUs stop performing any activity 140 * while the primary CPU resets the system. Systems with multiple CPUs must 141 * provide a HW restart implementation, to ensure that all CPUs reset at once. 142 * This is required so that any code running after reset on the primary CPU 143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 144 * executing pre-reset code, and using RAM that the primary CPU's code wishes 145 * to use. Implementing such co-ordination would be essentially impossible. 146 */ 147 void machine_restart(char *cmd) 148 { 149 /* Disable interrupts first */ 150 local_irq_disable(); 151 smp_send_stop(); 152 153 /* 154 * UpdateCapsule() depends on the system being reset via 155 * ResetSystem(). 156 */ 157 if (efi_enabled(EFI_RUNTIME_SERVICES)) 158 efi_reboot(reboot_mode, NULL); 159 160 /* Now call the architecture specific reboot code. */ 161 if (arm_pm_restart) 162 arm_pm_restart(reboot_mode, cmd); 163 else 164 do_kernel_restart(cmd); 165 166 /* 167 * Whoops - the architecture was unable to reboot. 168 */ 169 printk("Reboot failed -- System halted\n"); 170 while (1); 171 } 172 173 void __show_regs(struct pt_regs *regs) 174 { 175 int i, top_reg; 176 u64 lr, sp; 177 178 if (compat_user_mode(regs)) { 179 lr = regs->compat_lr; 180 sp = regs->compat_sp; 181 top_reg = 12; 182 } else { 183 lr = regs->regs[30]; 184 sp = regs->sp; 185 top_reg = 29; 186 } 187 188 show_regs_print_info(KERN_DEFAULT); 189 print_symbol("PC is at %s\n", instruction_pointer(regs)); 190 print_symbol("LR is at %s\n", lr); 191 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n", 192 regs->pc, lr, regs->pstate); 193 printk("sp : %016llx\n", sp); 194 195 i = top_reg; 196 197 while (i >= 0) { 198 printk("x%-2d: %016llx ", i, regs->regs[i]); 199 i--; 200 201 if (i % 2 == 0) { 202 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 203 i--; 204 } 205 206 pr_cont("\n"); 207 } 208 } 209 210 void show_regs(struct pt_regs * regs) 211 { 212 __show_regs(regs); 213 dump_backtrace(regs, NULL); 214 } 215 216 static void tls_thread_flush(void) 217 { 218 write_sysreg(0, tpidr_el0); 219 220 if (is_compat_task()) { 221 current->thread.tp_value = 0; 222 223 /* 224 * We need to ensure ordering between the shadow state and the 225 * hardware state, so that we don't corrupt the hardware state 226 * with a stale shadow state during context switch. 227 */ 228 barrier(); 229 write_sysreg(0, tpidrro_el0); 230 } 231 } 232 233 void flush_thread(void) 234 { 235 fpsimd_flush_thread(); 236 tls_thread_flush(); 237 flush_ptrace_hw_breakpoint(current); 238 } 239 240 void release_thread(struct task_struct *dead_task) 241 { 242 } 243 244 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 245 { 246 if (current->mm) 247 fpsimd_preserve_current_state(); 248 *dst = *src; 249 return 0; 250 } 251 252 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 253 254 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 255 unsigned long stk_sz, struct task_struct *p) 256 { 257 struct pt_regs *childregs = task_pt_regs(p); 258 259 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 260 261 if (likely(!(p->flags & PF_KTHREAD))) { 262 *childregs = *current_pt_regs(); 263 childregs->regs[0] = 0; 264 265 /* 266 * Read the current TLS pointer from tpidr_el0 as it may be 267 * out-of-sync with the saved value. 268 */ 269 *task_user_tls(p) = read_sysreg(tpidr_el0); 270 271 if (stack_start) { 272 if (is_compat_thread(task_thread_info(p))) 273 childregs->compat_sp = stack_start; 274 else 275 childregs->sp = stack_start; 276 } 277 278 /* 279 * If a TLS pointer was passed to clone (4th argument), use it 280 * for the new thread. 281 */ 282 if (clone_flags & CLONE_SETTLS) 283 p->thread.tp_value = childregs->regs[3]; 284 } else { 285 memset(childregs, 0, sizeof(struct pt_regs)); 286 childregs->pstate = PSR_MODE_EL1h; 287 if (IS_ENABLED(CONFIG_ARM64_UAO) && 288 cpus_have_const_cap(ARM64_HAS_UAO)) 289 childregs->pstate |= PSR_UAO_BIT; 290 p->thread.cpu_context.x19 = stack_start; 291 p->thread.cpu_context.x20 = stk_sz; 292 } 293 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 294 p->thread.cpu_context.sp = (unsigned long)childregs; 295 296 ptrace_hw_copy_thread(p); 297 298 return 0; 299 } 300 301 void tls_preserve_current_state(void) 302 { 303 *task_user_tls(current) = read_sysreg(tpidr_el0); 304 } 305 306 static void tls_thread_switch(struct task_struct *next) 307 { 308 unsigned long tpidr, tpidrro; 309 310 tls_preserve_current_state(); 311 312 tpidr = *task_user_tls(next); 313 tpidrro = is_compat_thread(task_thread_info(next)) ? 314 next->thread.tp_value : 0; 315 316 write_sysreg(tpidr, tpidr_el0); 317 write_sysreg(tpidrro, tpidrro_el0); 318 } 319 320 /* Restore the UAO state depending on next's addr_limit */ 321 void uao_thread_switch(struct task_struct *next) 322 { 323 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 324 if (task_thread_info(next)->addr_limit == KERNEL_DS) 325 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 326 else 327 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 328 } 329 } 330 331 /* 332 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 333 * shadow copy so that we can restore this upon entry from userspace. 334 * 335 * This is *only* for exception entry from EL0, and is not valid until we 336 * __switch_to() a user task. 337 */ 338 DEFINE_PER_CPU(struct task_struct *, __entry_task); 339 340 static void entry_task_switch(struct task_struct *next) 341 { 342 __this_cpu_write(__entry_task, next); 343 } 344 345 /* 346 * Thread switching. 347 */ 348 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 349 struct task_struct *next) 350 { 351 struct task_struct *last; 352 353 fpsimd_thread_switch(next); 354 tls_thread_switch(next); 355 hw_breakpoint_thread_switch(next); 356 contextidr_thread_switch(next); 357 entry_task_switch(next); 358 uao_thread_switch(next); 359 360 /* 361 * Complete any pending TLB or cache maintenance on this CPU in case 362 * the thread migrates to a different CPU. 363 */ 364 dsb(ish); 365 366 /* the actual thread switch */ 367 last = cpu_switch_to(prev, next); 368 369 return last; 370 } 371 372 unsigned long get_wchan(struct task_struct *p) 373 { 374 struct stackframe frame; 375 unsigned long stack_page, ret = 0; 376 int count = 0; 377 if (!p || p == current || p->state == TASK_RUNNING) 378 return 0; 379 380 stack_page = (unsigned long)try_get_task_stack(p); 381 if (!stack_page) 382 return 0; 383 384 frame.fp = thread_saved_fp(p); 385 frame.sp = thread_saved_sp(p); 386 frame.pc = thread_saved_pc(p); 387 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 388 frame.graph = p->curr_ret_stack; 389 #endif 390 do { 391 if (frame.sp < stack_page || 392 frame.sp >= stack_page + THREAD_SIZE || 393 unwind_frame(p, &frame)) 394 goto out; 395 if (!in_sched_functions(frame.pc)) { 396 ret = frame.pc; 397 goto out; 398 } 399 } while (count ++ < 16); 400 401 out: 402 put_task_stack(p); 403 return ret; 404 } 405 406 unsigned long arch_align_stack(unsigned long sp) 407 { 408 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 409 sp -= get_random_int() & ~PAGE_MASK; 410 return sp & ~0xf; 411 } 412 413 unsigned long arch_randomize_brk(struct mm_struct *mm) 414 { 415 if (is_compat_task()) 416 return randomize_page(mm->brk, SZ_32M); 417 else 418 return randomize_page(mm->brk, SZ_1G); 419 } 420