xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 48cc39c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/sched.h>
22 #include <linux/stddef.h>
23 #include <linux/sysctl.h>
24 #include <linux/unistd.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/elfcore.h>
32 #include <linux/pm.h>
33 #include <linux/tick.h>
34 #include <linux/utsname.h>
35 #include <linux/uaccess.h>
36 #include <linux/random.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/personality.h>
39 #include <linux/notifier.h>
40 #include <trace/events/power.h>
41 #include <linux/percpu.h>
42 #include <linux/thread_info.h>
43 #include <linux/prctl.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/compat.h>
47 #include <asm/cpufeature.h>
48 #include <asm/cacheflush.h>
49 #include <asm/exec.h>
50 #include <asm/fpsimd.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mte.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56 #include <asm/switch_to.h>
57 #include <asm/system_misc.h>
58 
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64 
65 /*
66  * Function pointers to optional machine specific functions
67  */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 void arch_cpu_idle_dead(void)
73 {
74        cpu_die();
75 }
76 #endif
77 
78 /*
79  * Called by kexec, immediately prior to machine_kexec().
80  *
81  * This must completely disable all secondary CPUs; simply causing those CPUs
82  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
83  * kexec'd kernel to use any and all RAM as it sees fit, without having to
84  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
85  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
86  */
87 void machine_shutdown(void)
88 {
89 	smp_shutdown_nonboot_cpus(reboot_cpu);
90 }
91 
92 /*
93  * Halting simply requires that the secondary CPUs stop performing any
94  * activity (executing tasks, handling interrupts). smp_send_stop()
95  * achieves this.
96  */
97 void machine_halt(void)
98 {
99 	local_irq_disable();
100 	smp_send_stop();
101 	while (1);
102 }
103 
104 /*
105  * Power-off simply requires that the secondary CPUs stop performing any
106  * activity (executing tasks, handling interrupts). smp_send_stop()
107  * achieves this. When the system power is turned off, it will take all CPUs
108  * with it.
109  */
110 void machine_power_off(void)
111 {
112 	local_irq_disable();
113 	smp_send_stop();
114 	if (pm_power_off)
115 		pm_power_off();
116 }
117 
118 /*
119  * Restart requires that the secondary CPUs stop performing any activity
120  * while the primary CPU resets the system. Systems with multiple CPUs must
121  * provide a HW restart implementation, to ensure that all CPUs reset at once.
122  * This is required so that any code running after reset on the primary CPU
123  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
124  * executing pre-reset code, and using RAM that the primary CPU's code wishes
125  * to use. Implementing such co-ordination would be essentially impossible.
126  */
127 void machine_restart(char *cmd)
128 {
129 	/* Disable interrupts first */
130 	local_irq_disable();
131 	smp_send_stop();
132 
133 	/*
134 	 * UpdateCapsule() depends on the system being reset via
135 	 * ResetSystem().
136 	 */
137 	if (efi_enabled(EFI_RUNTIME_SERVICES))
138 		efi_reboot(reboot_mode, NULL);
139 
140 	/* Now call the architecture specific reboot code. */
141 	do_kernel_restart(cmd);
142 
143 	/*
144 	 * Whoops - the architecture was unable to reboot.
145 	 */
146 	printk("Reboot failed -- System halted\n");
147 	while (1);
148 }
149 
150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
151 static const char *const btypes[] = {
152 	bstr(NONE, "--"),
153 	bstr(  JC, "jc"),
154 	bstr(   C, "-c"),
155 	bstr(  J , "j-")
156 };
157 #undef bstr
158 
159 static void print_pstate(struct pt_regs *regs)
160 {
161 	u64 pstate = regs->pstate;
162 
163 	if (compat_user_mode(regs)) {
164 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
165 			pstate,
166 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
167 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
168 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
169 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
170 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
171 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
172 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
173 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
174 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
175 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
176 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
177 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
178 	} else {
179 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 					       PSR_BTYPE_SHIFT];
181 
182 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
183 			pstate,
184 			pstate & PSR_N_BIT ? 'N' : 'n',
185 			pstate & PSR_Z_BIT ? 'Z' : 'z',
186 			pstate & PSR_C_BIT ? 'C' : 'c',
187 			pstate & PSR_V_BIT ? 'V' : 'v',
188 			pstate & PSR_D_BIT ? 'D' : 'd',
189 			pstate & PSR_A_BIT ? 'A' : 'a',
190 			pstate & PSR_I_BIT ? 'I' : 'i',
191 			pstate & PSR_F_BIT ? 'F' : 'f',
192 			pstate & PSR_PAN_BIT ? '+' : '-',
193 			pstate & PSR_UAO_BIT ? '+' : '-',
194 			pstate & PSR_TCO_BIT ? '+' : '-',
195 			pstate & PSR_DIT_BIT ? '+' : '-',
196 			pstate & PSR_SSBS_BIT ? '+' : '-',
197 			btype_str);
198 	}
199 }
200 
201 void __show_regs(struct pt_regs *regs)
202 {
203 	int i, top_reg;
204 	u64 lr, sp;
205 
206 	if (compat_user_mode(regs)) {
207 		lr = regs->compat_lr;
208 		sp = regs->compat_sp;
209 		top_reg = 12;
210 	} else {
211 		lr = regs->regs[30];
212 		sp = regs->sp;
213 		top_reg = 29;
214 	}
215 
216 	show_regs_print_info(KERN_DEFAULT);
217 	print_pstate(regs);
218 
219 	if (!user_mode(regs)) {
220 		printk("pc : %pS\n", (void *)regs->pc);
221 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
222 	} else {
223 		printk("pc : %016llx\n", regs->pc);
224 		printk("lr : %016llx\n", lr);
225 	}
226 
227 	printk("sp : %016llx\n", sp);
228 
229 	if (system_uses_irq_prio_masking())
230 		printk("pmr_save: %08llx\n", regs->pmr_save);
231 
232 	i = top_reg;
233 
234 	while (i >= 0) {
235 		printk("x%-2d: %016llx", i, regs->regs[i]);
236 
237 		while (i-- % 3)
238 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
239 
240 		pr_cont("\n");
241 	}
242 }
243 
244 void show_regs(struct pt_regs *regs)
245 {
246 	__show_regs(regs);
247 	dump_backtrace(regs, NULL, KERN_DEFAULT);
248 }
249 
250 static void tls_thread_flush(void)
251 {
252 	write_sysreg(0, tpidr_el0);
253 
254 	if (is_compat_task()) {
255 		current->thread.uw.tp_value = 0;
256 
257 		/*
258 		 * We need to ensure ordering between the shadow state and the
259 		 * hardware state, so that we don't corrupt the hardware state
260 		 * with a stale shadow state during context switch.
261 		 */
262 		barrier();
263 		write_sysreg(0, tpidrro_el0);
264 	}
265 }
266 
267 static void flush_tagged_addr_state(void)
268 {
269 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
270 		clear_thread_flag(TIF_TAGGED_ADDR);
271 }
272 
273 void flush_thread(void)
274 {
275 	fpsimd_flush_thread();
276 	tls_thread_flush();
277 	flush_ptrace_hw_breakpoint(current);
278 	flush_tagged_addr_state();
279 }
280 
281 void release_thread(struct task_struct *dead_task)
282 {
283 }
284 
285 void arch_release_task_struct(struct task_struct *tsk)
286 {
287 	fpsimd_release_task(tsk);
288 }
289 
290 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
291 {
292 	if (current->mm)
293 		fpsimd_preserve_current_state();
294 	*dst = *src;
295 
296 	/* We rely on the above assignment to initialize dst's thread_flags: */
297 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
298 
299 	/*
300 	 * Detach src's sve_state (if any) from dst so that it does not
301 	 * get erroneously used or freed prematurely.  dst's sve_state
302 	 * will be allocated on demand later on if dst uses SVE.
303 	 * For consistency, also clear TIF_SVE here: this could be done
304 	 * later in copy_process(), but to avoid tripping up future
305 	 * maintainers it is best not to leave TIF_SVE and sve_state in
306 	 * an inconsistent state, even temporarily.
307 	 */
308 	dst->thread.sve_state = NULL;
309 	clear_tsk_thread_flag(dst, TIF_SVE);
310 
311 	/* clear any pending asynchronous tag fault raised by the parent */
312 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
313 
314 	return 0;
315 }
316 
317 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
318 
319 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
320 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
321 {
322 	struct pt_regs *childregs = task_pt_regs(p);
323 
324 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
325 
326 	/*
327 	 * In case p was allocated the same task_struct pointer as some
328 	 * other recently-exited task, make sure p is disassociated from
329 	 * any cpu that may have run that now-exited task recently.
330 	 * Otherwise we could erroneously skip reloading the FPSIMD
331 	 * registers for p.
332 	 */
333 	fpsimd_flush_task_state(p);
334 
335 	ptrauth_thread_init_kernel(p);
336 
337 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
338 		*childregs = *current_pt_regs();
339 		childregs->regs[0] = 0;
340 
341 		/*
342 		 * Read the current TLS pointer from tpidr_el0 as it may be
343 		 * out-of-sync with the saved value.
344 		 */
345 		*task_user_tls(p) = read_sysreg(tpidr_el0);
346 
347 		if (stack_start) {
348 			if (is_compat_thread(task_thread_info(p)))
349 				childregs->compat_sp = stack_start;
350 			else
351 				childregs->sp = stack_start;
352 		}
353 
354 		/*
355 		 * If a TLS pointer was passed to clone, use it for the new
356 		 * thread.
357 		 */
358 		if (clone_flags & CLONE_SETTLS)
359 			p->thread.uw.tp_value = tls;
360 	} else {
361 		/*
362 		 * A kthread has no context to ERET to, so ensure any buggy
363 		 * ERET is treated as an illegal exception return.
364 		 *
365 		 * When a user task is created from a kthread, childregs will
366 		 * be initialized by start_thread() or start_compat_thread().
367 		 */
368 		memset(childregs, 0, sizeof(struct pt_regs));
369 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
370 
371 		p->thread.cpu_context.x19 = stack_start;
372 		p->thread.cpu_context.x20 = stk_sz;
373 	}
374 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
375 	p->thread.cpu_context.sp = (unsigned long)childregs;
376 	/*
377 	 * For the benefit of the unwinder, set up childregs->stackframe
378 	 * as the final frame for the new task.
379 	 */
380 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
381 
382 	ptrace_hw_copy_thread(p);
383 
384 	return 0;
385 }
386 
387 void tls_preserve_current_state(void)
388 {
389 	*task_user_tls(current) = read_sysreg(tpidr_el0);
390 }
391 
392 static void tls_thread_switch(struct task_struct *next)
393 {
394 	tls_preserve_current_state();
395 
396 	if (is_compat_thread(task_thread_info(next)))
397 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
398 	else if (!arm64_kernel_unmapped_at_el0())
399 		write_sysreg(0, tpidrro_el0);
400 
401 	write_sysreg(*task_user_tls(next), tpidr_el0);
402 }
403 
404 /*
405  * Force SSBS state on context-switch, since it may be lost after migrating
406  * from a CPU which treats the bit as RES0 in a heterogeneous system.
407  */
408 static void ssbs_thread_switch(struct task_struct *next)
409 {
410 	/*
411 	 * Nothing to do for kernel threads, but 'regs' may be junk
412 	 * (e.g. idle task) so check the flags and bail early.
413 	 */
414 	if (unlikely(next->flags & PF_KTHREAD))
415 		return;
416 
417 	/*
418 	 * If all CPUs implement the SSBS extension, then we just need to
419 	 * context-switch the PSTATE field.
420 	 */
421 	if (cpus_have_const_cap(ARM64_SSBS))
422 		return;
423 
424 	spectre_v4_enable_task_mitigation(next);
425 }
426 
427 /*
428  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
429  * shadow copy so that we can restore this upon entry from userspace.
430  *
431  * This is *only* for exception entry from EL0, and is not valid until we
432  * __switch_to() a user task.
433  */
434 DEFINE_PER_CPU(struct task_struct *, __entry_task);
435 
436 static void entry_task_switch(struct task_struct *next)
437 {
438 	__this_cpu_write(__entry_task, next);
439 }
440 
441 /*
442  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
443  * Assuming the virtual counter is enabled at the beginning of times:
444  *
445  * - disable access when switching from a 64bit task to a 32bit task
446  * - enable access when switching from a 32bit task to a 64bit task
447  */
448 static void erratum_1418040_thread_switch(struct task_struct *prev,
449 					  struct task_struct *next)
450 {
451 	bool prev32, next32;
452 	u64 val;
453 
454 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
455 		return;
456 
457 	prev32 = is_compat_thread(task_thread_info(prev));
458 	next32 = is_compat_thread(task_thread_info(next));
459 
460 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
461 		return;
462 
463 	val = read_sysreg(cntkctl_el1);
464 
465 	if (!next32)
466 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
467 	else
468 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
469 
470 	write_sysreg(val, cntkctl_el1);
471 }
472 
473 /*
474  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
475  * this function must be called with preemption disabled and the update to
476  * sctlr_user must be made in the same preemption disabled block so that
477  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
478  */
479 void update_sctlr_el1(u64 sctlr)
480 {
481 	/*
482 	 * EnIA must not be cleared while in the kernel as this is necessary for
483 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
484 	 */
485 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
486 
487 	/* ISB required for the kernel uaccess routines when setting TCF0. */
488 	isb();
489 }
490 
491 /*
492  * Thread switching.
493  */
494 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
495 				struct task_struct *next)
496 {
497 	struct task_struct *last;
498 
499 	fpsimd_thread_switch(next);
500 	tls_thread_switch(next);
501 	hw_breakpoint_thread_switch(next);
502 	contextidr_thread_switch(next);
503 	entry_task_switch(next);
504 	ssbs_thread_switch(next);
505 	erratum_1418040_thread_switch(prev, next);
506 	ptrauth_thread_switch_user(next);
507 
508 	/*
509 	 * Complete any pending TLB or cache maintenance on this CPU in case
510 	 * the thread migrates to a different CPU.
511 	 * This full barrier is also required by the membarrier system
512 	 * call.
513 	 */
514 	dsb(ish);
515 
516 	/*
517 	 * MTE thread switching must happen after the DSB above to ensure that
518 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
519 	 * registers.
520 	 */
521 	mte_thread_switch(next);
522 	/* avoid expensive SCTLR_EL1 accesses if no change */
523 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
524 		update_sctlr_el1(next->thread.sctlr_user);
525 
526 	/* the actual thread switch */
527 	last = cpu_switch_to(prev, next);
528 
529 	return last;
530 }
531 
532 unsigned long get_wchan(struct task_struct *p)
533 {
534 	struct stackframe frame;
535 	unsigned long stack_page, ret = 0;
536 	int count = 0;
537 	if (!p || p == current || task_is_running(p))
538 		return 0;
539 
540 	stack_page = (unsigned long)try_get_task_stack(p);
541 	if (!stack_page)
542 		return 0;
543 
544 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
545 
546 	do {
547 		if (unwind_frame(p, &frame))
548 			goto out;
549 		if (!in_sched_functions(frame.pc)) {
550 			ret = frame.pc;
551 			goto out;
552 		}
553 	} while (count++ < 16);
554 
555 out:
556 	put_task_stack(p);
557 	return ret;
558 }
559 
560 unsigned long arch_align_stack(unsigned long sp)
561 {
562 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
563 		sp -= get_random_int() & ~PAGE_MASK;
564 	return sp & ~0xf;
565 }
566 
567 #ifdef CONFIG_COMPAT
568 int compat_elf_check_arch(const struct elf32_hdr *hdr)
569 {
570 	if (!system_supports_32bit_el0())
571 		return false;
572 
573 	if ((hdr)->e_machine != EM_ARM)
574 		return false;
575 
576 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
577 		return false;
578 
579 	/*
580 	 * Prevent execve() of a 32-bit program from a deadline task
581 	 * if the restricted affinity mask would be inadmissible on an
582 	 * asymmetric system.
583 	 */
584 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
585 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
586 }
587 #endif
588 
589 /*
590  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
591  */
592 void arch_setup_new_exec(void)
593 {
594 	unsigned long mmflags = 0;
595 
596 	if (is_compat_task()) {
597 		mmflags = MMCF_AARCH32;
598 
599 		/*
600 		 * Restrict the CPU affinity mask for a 32-bit task so that
601 		 * it contains only 32-bit-capable CPUs.
602 		 *
603 		 * From the perspective of the task, this looks similar to
604 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
605 		 * at the point of execve(), although we try a bit harder to
606 		 * honour the cpuset hierarchy.
607 		 */
608 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
609 			force_compatible_cpus_allowed_ptr(current);
610 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
611 		relax_compatible_cpus_allowed_ptr(current);
612 	}
613 
614 	current->mm->context.flags = mmflags;
615 	ptrauth_thread_init_user();
616 	mte_thread_init_user();
617 
618 	if (task_spec_ssb_noexec(current)) {
619 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
620 					 PR_SPEC_ENABLE);
621 	}
622 }
623 
624 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
625 /*
626  * Control the relaxed ABI allowing tagged user addresses into the kernel.
627  */
628 static unsigned int tagged_addr_disabled;
629 
630 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
631 {
632 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
633 	struct thread_info *ti = task_thread_info(task);
634 
635 	if (is_compat_thread(ti))
636 		return -EINVAL;
637 
638 	if (system_supports_mte())
639 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
640 
641 	if (arg & ~valid_mask)
642 		return -EINVAL;
643 
644 	/*
645 	 * Do not allow the enabling of the tagged address ABI if globally
646 	 * disabled via sysctl abi.tagged_addr_disabled.
647 	 */
648 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
649 		return -EINVAL;
650 
651 	if (set_mte_ctrl(task, arg) != 0)
652 		return -EINVAL;
653 
654 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
655 
656 	return 0;
657 }
658 
659 long get_tagged_addr_ctrl(struct task_struct *task)
660 {
661 	long ret = 0;
662 	struct thread_info *ti = task_thread_info(task);
663 
664 	if (is_compat_thread(ti))
665 		return -EINVAL;
666 
667 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
668 		ret = PR_TAGGED_ADDR_ENABLE;
669 
670 	ret |= get_mte_ctrl(task);
671 
672 	return ret;
673 }
674 
675 /*
676  * Global sysctl to disable the tagged user addresses support. This control
677  * only prevents the tagged address ABI enabling via prctl() and does not
678  * disable it for tasks that already opted in to the relaxed ABI.
679  */
680 
681 static struct ctl_table tagged_addr_sysctl_table[] = {
682 	{
683 		.procname	= "tagged_addr_disabled",
684 		.mode		= 0644,
685 		.data		= &tagged_addr_disabled,
686 		.maxlen		= sizeof(int),
687 		.proc_handler	= proc_dointvec_minmax,
688 		.extra1		= SYSCTL_ZERO,
689 		.extra2		= SYSCTL_ONE,
690 	},
691 	{ }
692 };
693 
694 static int __init tagged_addr_init(void)
695 {
696 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
697 		return -EINVAL;
698 	return 0;
699 }
700 
701 core_initcall(tagged_addr_init);
702 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
703 
704 #ifdef CONFIG_BINFMT_ELF
705 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
706 			 bool has_interp, bool is_interp)
707 {
708 	/*
709 	 * For dynamically linked executables the interpreter is
710 	 * responsible for setting PROT_BTI on everything except
711 	 * itself.
712 	 */
713 	if (is_interp != has_interp)
714 		return prot;
715 
716 	if (!(state->flags & ARM64_ELF_BTI))
717 		return prot;
718 
719 	if (prot & PROT_EXEC)
720 		prot |= PROT_BTI;
721 
722 	return prot;
723 }
724 #endif
725