1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/kernel.h> 28 #include <linux/mm.h> 29 #include <linux/stddef.h> 30 #include <linux/unistd.h> 31 #include <linux/user.h> 32 #include <linux/delay.h> 33 #include <linux/reboot.h> 34 #include <linux/interrupt.h> 35 #include <linux/kallsyms.h> 36 #include <linux/init.h> 37 #include <linux/cpu.h> 38 #include <linux/elfcore.h> 39 #include <linux/pm.h> 40 #include <linux/tick.h> 41 #include <linux/utsname.h> 42 #include <linux/uaccess.h> 43 #include <linux/random.h> 44 #include <linux/hw_breakpoint.h> 45 #include <linux/personality.h> 46 #include <linux/notifier.h> 47 #include <trace/events/power.h> 48 49 #include <asm/alternative.h> 50 #include <asm/compat.h> 51 #include <asm/cacheflush.h> 52 #include <asm/fpsimd.h> 53 #include <asm/mmu_context.h> 54 #include <asm/processor.h> 55 #include <asm/stacktrace.h> 56 57 #ifdef CONFIG_CC_STACKPROTECTOR 58 #include <linux/stackprotector.h> 59 unsigned long __stack_chk_guard __read_mostly; 60 EXPORT_SYMBOL(__stack_chk_guard); 61 #endif 62 63 /* 64 * Function pointers to optional machine specific functions 65 */ 66 void (*pm_power_off)(void); 67 EXPORT_SYMBOL_GPL(pm_power_off); 68 69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 70 71 /* 72 * This is our default idle handler. 73 */ 74 void arch_cpu_idle(void) 75 { 76 /* 77 * This should do all the clock switching and wait for interrupt 78 * tricks 79 */ 80 trace_cpu_idle_rcuidle(1, smp_processor_id()); 81 cpu_do_idle(); 82 local_irq_enable(); 83 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 84 } 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 void arch_cpu_idle_dead(void) 88 { 89 cpu_die(); 90 } 91 #endif 92 93 /* 94 * Called by kexec, immediately prior to machine_kexec(). 95 * 96 * This must completely disable all secondary CPUs; simply causing those CPUs 97 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 98 * kexec'd kernel to use any and all RAM as it sees fit, without having to 99 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 100 * functionality embodied in disable_nonboot_cpus() to achieve this. 101 */ 102 void machine_shutdown(void) 103 { 104 disable_nonboot_cpus(); 105 } 106 107 /* 108 * Halting simply requires that the secondary CPUs stop performing any 109 * activity (executing tasks, handling interrupts). smp_send_stop() 110 * achieves this. 111 */ 112 void machine_halt(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 while (1); 117 } 118 119 /* 120 * Power-off simply requires that the secondary CPUs stop performing any 121 * activity (executing tasks, handling interrupts). smp_send_stop() 122 * achieves this. When the system power is turned off, it will take all CPUs 123 * with it. 124 */ 125 void machine_power_off(void) 126 { 127 local_irq_disable(); 128 smp_send_stop(); 129 if (pm_power_off) 130 pm_power_off(); 131 } 132 133 /* 134 * Restart requires that the secondary CPUs stop performing any activity 135 * while the primary CPU resets the system. Systems with multiple CPUs must 136 * provide a HW restart implementation, to ensure that all CPUs reset at once. 137 * This is required so that any code running after reset on the primary CPU 138 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 139 * executing pre-reset code, and using RAM that the primary CPU's code wishes 140 * to use. Implementing such co-ordination would be essentially impossible. 141 */ 142 void machine_restart(char *cmd) 143 { 144 /* Disable interrupts first */ 145 local_irq_disable(); 146 smp_send_stop(); 147 148 /* 149 * UpdateCapsule() depends on the system being reset via 150 * ResetSystem(). 151 */ 152 if (efi_enabled(EFI_RUNTIME_SERVICES)) 153 efi_reboot(reboot_mode, NULL); 154 155 /* Now call the architecture specific reboot code. */ 156 if (arm_pm_restart) 157 arm_pm_restart(reboot_mode, cmd); 158 else 159 do_kernel_restart(cmd); 160 161 /* 162 * Whoops - the architecture was unable to reboot. 163 */ 164 printk("Reboot failed -- System halted\n"); 165 while (1); 166 } 167 168 void __show_regs(struct pt_regs *regs) 169 { 170 int i, top_reg; 171 u64 lr, sp; 172 173 if (compat_user_mode(regs)) { 174 lr = regs->compat_lr; 175 sp = regs->compat_sp; 176 top_reg = 12; 177 } else { 178 lr = regs->regs[30]; 179 sp = regs->sp; 180 top_reg = 29; 181 } 182 183 show_regs_print_info(KERN_DEFAULT); 184 print_symbol("PC is at %s\n", instruction_pointer(regs)); 185 print_symbol("LR is at %s\n", lr); 186 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n", 187 regs->pc, lr, regs->pstate); 188 printk("sp : %016llx\n", sp); 189 for (i = top_reg; i >= 0; i--) { 190 printk("x%-2d: %016llx ", i, regs->regs[i]); 191 if (i % 2 == 0) 192 printk("\n"); 193 } 194 printk("\n"); 195 } 196 197 void show_regs(struct pt_regs * regs) 198 { 199 printk("\n"); 200 __show_regs(regs); 201 } 202 203 static void tls_thread_flush(void) 204 { 205 asm ("msr tpidr_el0, xzr"); 206 207 if (is_compat_task()) { 208 current->thread.tp_value = 0; 209 210 /* 211 * We need to ensure ordering between the shadow state and the 212 * hardware state, so that we don't corrupt the hardware state 213 * with a stale shadow state during context switch. 214 */ 215 barrier(); 216 asm ("msr tpidrro_el0, xzr"); 217 } 218 } 219 220 void flush_thread(void) 221 { 222 fpsimd_flush_thread(); 223 tls_thread_flush(); 224 flush_ptrace_hw_breakpoint(current); 225 } 226 227 void release_thread(struct task_struct *dead_task) 228 { 229 } 230 231 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 232 { 233 if (current->mm) 234 fpsimd_preserve_current_state(); 235 *dst = *src; 236 return 0; 237 } 238 239 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 240 241 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 242 unsigned long stk_sz, struct task_struct *p) 243 { 244 struct pt_regs *childregs = task_pt_regs(p); 245 246 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 247 248 if (likely(!(p->flags & PF_KTHREAD))) { 249 *childregs = *current_pt_regs(); 250 childregs->regs[0] = 0; 251 252 /* 253 * Read the current TLS pointer from tpidr_el0 as it may be 254 * out-of-sync with the saved value. 255 */ 256 asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p))); 257 258 if (stack_start) { 259 if (is_compat_thread(task_thread_info(p))) 260 childregs->compat_sp = stack_start; 261 else 262 childregs->sp = stack_start; 263 } 264 265 /* 266 * If a TLS pointer was passed to clone (4th argument), use it 267 * for the new thread. 268 */ 269 if (clone_flags & CLONE_SETTLS) 270 p->thread.tp_value = childregs->regs[3]; 271 } else { 272 memset(childregs, 0, sizeof(struct pt_regs)); 273 childregs->pstate = PSR_MODE_EL1h; 274 if (IS_ENABLED(CONFIG_ARM64_UAO) && 275 cpus_have_cap(ARM64_HAS_UAO)) 276 childregs->pstate |= PSR_UAO_BIT; 277 p->thread.cpu_context.x19 = stack_start; 278 p->thread.cpu_context.x20 = stk_sz; 279 } 280 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 281 p->thread.cpu_context.sp = (unsigned long)childregs; 282 283 ptrace_hw_copy_thread(p); 284 285 return 0; 286 } 287 288 static void tls_thread_switch(struct task_struct *next) 289 { 290 unsigned long tpidr, tpidrro; 291 292 asm("mrs %0, tpidr_el0" : "=r" (tpidr)); 293 *task_user_tls(current) = tpidr; 294 295 tpidr = *task_user_tls(next); 296 tpidrro = is_compat_thread(task_thread_info(next)) ? 297 next->thread.tp_value : 0; 298 299 asm( 300 " msr tpidr_el0, %0\n" 301 " msr tpidrro_el0, %1" 302 : : "r" (tpidr), "r" (tpidrro)); 303 } 304 305 /* Restore the UAO state depending on next's addr_limit */ 306 static void uao_thread_switch(struct task_struct *next) 307 { 308 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 309 if (task_thread_info(next)->addr_limit == KERNEL_DS) 310 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 311 else 312 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 313 } 314 } 315 316 /* 317 * Thread switching. 318 */ 319 struct task_struct *__switch_to(struct task_struct *prev, 320 struct task_struct *next) 321 { 322 struct task_struct *last; 323 324 fpsimd_thread_switch(next); 325 tls_thread_switch(next); 326 hw_breakpoint_thread_switch(next); 327 contextidr_thread_switch(next); 328 uao_thread_switch(next); 329 330 /* 331 * Complete any pending TLB or cache maintenance on this CPU in case 332 * the thread migrates to a different CPU. 333 */ 334 dsb(ish); 335 336 /* the actual thread switch */ 337 last = cpu_switch_to(prev, next); 338 339 return last; 340 } 341 342 unsigned long get_wchan(struct task_struct *p) 343 { 344 struct stackframe frame; 345 unsigned long stack_page; 346 int count = 0; 347 if (!p || p == current || p->state == TASK_RUNNING) 348 return 0; 349 350 frame.fp = thread_saved_fp(p); 351 frame.sp = thread_saved_sp(p); 352 frame.pc = thread_saved_pc(p); 353 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 354 frame.graph = p->curr_ret_stack; 355 #endif 356 stack_page = (unsigned long)task_stack_page(p); 357 do { 358 if (frame.sp < stack_page || 359 frame.sp >= stack_page + THREAD_SIZE || 360 unwind_frame(p, &frame)) 361 return 0; 362 if (!in_sched_functions(frame.pc)) 363 return frame.pc; 364 } while (count ++ < 16); 365 return 0; 366 } 367 368 unsigned long arch_align_stack(unsigned long sp) 369 { 370 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 371 sp -= get_random_int() & ~PAGE_MASK; 372 return sp & ~0xf; 373 } 374 375 unsigned long arch_randomize_brk(struct mm_struct *mm) 376 { 377 unsigned long range_end = mm->brk; 378 379 if (is_compat_task()) 380 range_end += 0x02000000; 381 else 382 range_end += 0x40000000; 383 384 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 385 } 386