xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 2fa49589)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/init.h>
39 #include <linux/cpu.h>
40 #include <linux/elfcore.h>
41 #include <linux/pm.h>
42 #include <linux/tick.h>
43 #include <linux/utsname.h>
44 #include <linux/uaccess.h>
45 #include <linux/random.h>
46 #include <linux/hw_breakpoint.h>
47 #include <linux/personality.h>
48 #include <linux/notifier.h>
49 #include <trace/events/power.h>
50 #include <linux/percpu.h>
51 #include <linux/thread_info.h>
52 
53 #include <asm/alternative.h>
54 #include <asm/compat.h>
55 #include <asm/cacheflush.h>
56 #include <asm/exec.h>
57 #include <asm/fpsimd.h>
58 #include <asm/mmu_context.h>
59 #include <asm/processor.h>
60 #include <asm/pointer_auth.h>
61 #include <asm/stacktrace.h>
62 
63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68 
69 /*
70  * Function pointers to optional machine specific functions
71  */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74 
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76 
77 /*
78  * This is our default idle handler.
79  */
80 void arch_cpu_idle(void)
81 {
82 	/*
83 	 * This should do all the clock switching and wait for interrupt
84 	 * tricks
85 	 */
86 	trace_cpu_idle_rcuidle(1, smp_processor_id());
87 	cpu_do_idle();
88 	local_irq_enable();
89 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
90 }
91 
92 #ifdef CONFIG_HOTPLUG_CPU
93 void arch_cpu_idle_dead(void)
94 {
95        cpu_die();
96 }
97 #endif
98 
99 /*
100  * Called by kexec, immediately prior to machine_kexec().
101  *
102  * This must completely disable all secondary CPUs; simply causing those CPUs
103  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
104  * kexec'd kernel to use any and all RAM as it sees fit, without having to
105  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
106  * functionality embodied in disable_nonboot_cpus() to achieve this.
107  */
108 void machine_shutdown(void)
109 {
110 	disable_nonboot_cpus();
111 }
112 
113 /*
114  * Halting simply requires that the secondary CPUs stop performing any
115  * activity (executing tasks, handling interrupts). smp_send_stop()
116  * achieves this.
117  */
118 void machine_halt(void)
119 {
120 	local_irq_disable();
121 	smp_send_stop();
122 	while (1);
123 }
124 
125 /*
126  * Power-off simply requires that the secondary CPUs stop performing any
127  * activity (executing tasks, handling interrupts). smp_send_stop()
128  * achieves this. When the system power is turned off, it will take all CPUs
129  * with it.
130  */
131 void machine_power_off(void)
132 {
133 	local_irq_disable();
134 	smp_send_stop();
135 	if (pm_power_off)
136 		pm_power_off();
137 }
138 
139 /*
140  * Restart requires that the secondary CPUs stop performing any activity
141  * while the primary CPU resets the system. Systems with multiple CPUs must
142  * provide a HW restart implementation, to ensure that all CPUs reset at once.
143  * This is required so that any code running after reset on the primary CPU
144  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
145  * executing pre-reset code, and using RAM that the primary CPU's code wishes
146  * to use. Implementing such co-ordination would be essentially impossible.
147  */
148 void machine_restart(char *cmd)
149 {
150 	/* Disable interrupts first */
151 	local_irq_disable();
152 	smp_send_stop();
153 
154 	/*
155 	 * UpdateCapsule() depends on the system being reset via
156 	 * ResetSystem().
157 	 */
158 	if (efi_enabled(EFI_RUNTIME_SERVICES))
159 		efi_reboot(reboot_mode, NULL);
160 
161 	/* Now call the architecture specific reboot code. */
162 	if (arm_pm_restart)
163 		arm_pm_restart(reboot_mode, cmd);
164 	else
165 		do_kernel_restart(cmd);
166 
167 	/*
168 	 * Whoops - the architecture was unable to reboot.
169 	 */
170 	printk("Reboot failed -- System halted\n");
171 	while (1);
172 }
173 
174 static void print_pstate(struct pt_regs *regs)
175 {
176 	u64 pstate = regs->pstate;
177 
178 	if (compat_user_mode(regs)) {
179 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
180 			pstate,
181 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
182 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
183 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
184 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
185 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
186 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
187 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
188 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
189 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
190 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
191 	} else {
192 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
193 			pstate,
194 			pstate & PSR_N_BIT ? 'N' : 'n',
195 			pstate & PSR_Z_BIT ? 'Z' : 'z',
196 			pstate & PSR_C_BIT ? 'C' : 'c',
197 			pstate & PSR_V_BIT ? 'V' : 'v',
198 			pstate & PSR_D_BIT ? 'D' : 'd',
199 			pstate & PSR_A_BIT ? 'A' : 'a',
200 			pstate & PSR_I_BIT ? 'I' : 'i',
201 			pstate & PSR_F_BIT ? 'F' : 'f',
202 			pstate & PSR_PAN_BIT ? '+' : '-',
203 			pstate & PSR_UAO_BIT ? '+' : '-');
204 	}
205 }
206 
207 void __show_regs(struct pt_regs *regs)
208 {
209 	int i, top_reg;
210 	u64 lr, sp;
211 
212 	if (compat_user_mode(regs)) {
213 		lr = regs->compat_lr;
214 		sp = regs->compat_sp;
215 		top_reg = 12;
216 	} else {
217 		lr = regs->regs[30];
218 		sp = regs->sp;
219 		top_reg = 29;
220 	}
221 
222 	show_regs_print_info(KERN_DEFAULT);
223 	print_pstate(regs);
224 
225 	if (!user_mode(regs)) {
226 		printk("pc : %pS\n", (void *)regs->pc);
227 		printk("lr : %pS\n", (void *)lr);
228 	} else {
229 		printk("pc : %016llx\n", regs->pc);
230 		printk("lr : %016llx\n", lr);
231 	}
232 
233 	printk("sp : %016llx\n", sp);
234 
235 	i = top_reg;
236 
237 	while (i >= 0) {
238 		printk("x%-2d: %016llx ", i, regs->regs[i]);
239 		i--;
240 
241 		if (i % 2 == 0) {
242 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
243 			i--;
244 		}
245 
246 		pr_cont("\n");
247 	}
248 }
249 
250 void show_regs(struct pt_regs * regs)
251 {
252 	__show_regs(regs);
253 	dump_backtrace(regs, NULL);
254 }
255 
256 static void tls_thread_flush(void)
257 {
258 	write_sysreg(0, tpidr_el0);
259 
260 	if (is_compat_task()) {
261 		current->thread.uw.tp_value = 0;
262 
263 		/*
264 		 * We need to ensure ordering between the shadow state and the
265 		 * hardware state, so that we don't corrupt the hardware state
266 		 * with a stale shadow state during context switch.
267 		 */
268 		barrier();
269 		write_sysreg(0, tpidrro_el0);
270 	}
271 }
272 
273 void flush_thread(void)
274 {
275 	fpsimd_flush_thread();
276 	tls_thread_flush();
277 	flush_ptrace_hw_breakpoint(current);
278 }
279 
280 void release_thread(struct task_struct *dead_task)
281 {
282 }
283 
284 void arch_release_task_struct(struct task_struct *tsk)
285 {
286 	fpsimd_release_task(tsk);
287 }
288 
289 /*
290  * src and dst may temporarily have aliased sve_state after task_struct
291  * is copied.  We cannot fix this properly here, because src may have
292  * live SVE state and dst's thread_info may not exist yet, so tweaking
293  * either src's or dst's TIF_SVE is not safe.
294  *
295  * The unaliasing is done in copy_thread() instead.  This works because
296  * dst is not schedulable or traceable until both of these functions
297  * have been called.
298  */
299 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
300 {
301 	if (current->mm)
302 		fpsimd_preserve_current_state();
303 	*dst = *src;
304 
305 	return 0;
306 }
307 
308 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
309 
310 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
311 		unsigned long stk_sz, struct task_struct *p)
312 {
313 	struct pt_regs *childregs = task_pt_regs(p);
314 
315 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
316 
317 	/*
318 	 * Unalias p->thread.sve_state (if any) from the parent task
319 	 * and disable discard SVE state for p:
320 	 */
321 	clear_tsk_thread_flag(p, TIF_SVE);
322 	p->thread.sve_state = NULL;
323 
324 	/*
325 	 * In case p was allocated the same task_struct pointer as some
326 	 * other recently-exited task, make sure p is disassociated from
327 	 * any cpu that may have run that now-exited task recently.
328 	 * Otherwise we could erroneously skip reloading the FPSIMD
329 	 * registers for p.
330 	 */
331 	fpsimd_flush_task_state(p);
332 
333 	if (likely(!(p->flags & PF_KTHREAD))) {
334 		*childregs = *current_pt_regs();
335 		childregs->regs[0] = 0;
336 
337 		/*
338 		 * Read the current TLS pointer from tpidr_el0 as it may be
339 		 * out-of-sync with the saved value.
340 		 */
341 		*task_user_tls(p) = read_sysreg(tpidr_el0);
342 
343 		if (stack_start) {
344 			if (is_compat_thread(task_thread_info(p)))
345 				childregs->compat_sp = stack_start;
346 			else
347 				childregs->sp = stack_start;
348 		}
349 
350 		/*
351 		 * If a TLS pointer was passed to clone (4th argument), use it
352 		 * for the new thread.
353 		 */
354 		if (clone_flags & CLONE_SETTLS)
355 			p->thread.uw.tp_value = childregs->regs[3];
356 	} else {
357 		memset(childregs, 0, sizeof(struct pt_regs));
358 		childregs->pstate = PSR_MODE_EL1h;
359 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
360 		    cpus_have_const_cap(ARM64_HAS_UAO))
361 			childregs->pstate |= PSR_UAO_BIT;
362 
363 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
364 			childregs->pstate |= PSR_SSBS_BIT;
365 
366 		p->thread.cpu_context.x19 = stack_start;
367 		p->thread.cpu_context.x20 = stk_sz;
368 	}
369 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
370 	p->thread.cpu_context.sp = (unsigned long)childregs;
371 
372 	ptrace_hw_copy_thread(p);
373 
374 	return 0;
375 }
376 
377 void tls_preserve_current_state(void)
378 {
379 	*task_user_tls(current) = read_sysreg(tpidr_el0);
380 }
381 
382 static void tls_thread_switch(struct task_struct *next)
383 {
384 	tls_preserve_current_state();
385 
386 	if (is_compat_thread(task_thread_info(next)))
387 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
388 	else if (!arm64_kernel_unmapped_at_el0())
389 		write_sysreg(0, tpidrro_el0);
390 
391 	write_sysreg(*task_user_tls(next), tpidr_el0);
392 }
393 
394 /* Restore the UAO state depending on next's addr_limit */
395 void uao_thread_switch(struct task_struct *next)
396 {
397 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
398 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
399 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
400 		else
401 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
402 	}
403 }
404 
405 /*
406  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
407  * shadow copy so that we can restore this upon entry from userspace.
408  *
409  * This is *only* for exception entry from EL0, and is not valid until we
410  * __switch_to() a user task.
411  */
412 DEFINE_PER_CPU(struct task_struct *, __entry_task);
413 
414 static void entry_task_switch(struct task_struct *next)
415 {
416 	__this_cpu_write(__entry_task, next);
417 }
418 
419 /*
420  * Thread switching.
421  */
422 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
423 				struct task_struct *next)
424 {
425 	struct task_struct *last;
426 
427 	fpsimd_thread_switch(next);
428 	tls_thread_switch(next);
429 	hw_breakpoint_thread_switch(next);
430 	contextidr_thread_switch(next);
431 	entry_task_switch(next);
432 	uao_thread_switch(next);
433 	ptrauth_thread_switch(next);
434 
435 	/*
436 	 * Complete any pending TLB or cache maintenance on this CPU in case
437 	 * the thread migrates to a different CPU.
438 	 * This full barrier is also required by the membarrier system
439 	 * call.
440 	 */
441 	dsb(ish);
442 
443 	/* the actual thread switch */
444 	last = cpu_switch_to(prev, next);
445 
446 	return last;
447 }
448 
449 unsigned long get_wchan(struct task_struct *p)
450 {
451 	struct stackframe frame;
452 	unsigned long stack_page, ret = 0;
453 	int count = 0;
454 	if (!p || p == current || p->state == TASK_RUNNING)
455 		return 0;
456 
457 	stack_page = (unsigned long)try_get_task_stack(p);
458 	if (!stack_page)
459 		return 0;
460 
461 	frame.fp = thread_saved_fp(p);
462 	frame.pc = thread_saved_pc(p);
463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
464 	frame.graph = 0;
465 #endif
466 	do {
467 		if (unwind_frame(p, &frame))
468 			goto out;
469 		if (!in_sched_functions(frame.pc)) {
470 			ret = frame.pc;
471 			goto out;
472 		}
473 	} while (count ++ < 16);
474 
475 out:
476 	put_task_stack(p);
477 	return ret;
478 }
479 
480 unsigned long arch_align_stack(unsigned long sp)
481 {
482 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
483 		sp -= get_random_int() & ~PAGE_MASK;
484 	return sp & ~0xf;
485 }
486 
487 unsigned long arch_randomize_brk(struct mm_struct *mm)
488 {
489 	if (is_compat_task())
490 		return randomize_page(mm->brk, SZ_32M);
491 	else
492 		return randomize_page(mm->brk, SZ_1G);
493 }
494 
495 /*
496  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
497  */
498 void arch_setup_new_exec(void)
499 {
500 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
501 
502 	ptrauth_thread_init_user(current);
503 }
504