1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/sched/debug.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/user.h> 35 #include <linux/delay.h> 36 #include <linux/reboot.h> 37 #include <linux/interrupt.h> 38 #include <linux/init.h> 39 #include <linux/cpu.h> 40 #include <linux/elfcore.h> 41 #include <linux/pm.h> 42 #include <linux/tick.h> 43 #include <linux/utsname.h> 44 #include <linux/uaccess.h> 45 #include <linux/random.h> 46 #include <linux/hw_breakpoint.h> 47 #include <linux/personality.h> 48 #include <linux/notifier.h> 49 #include <trace/events/power.h> 50 #include <linux/percpu.h> 51 #include <linux/thread_info.h> 52 53 #include <asm/alternative.h> 54 #include <asm/compat.h> 55 #include <asm/cacheflush.h> 56 #include <asm/exec.h> 57 #include <asm/fpsimd.h> 58 #include <asm/mmu_context.h> 59 #include <asm/processor.h> 60 #include <asm/pointer_auth.h> 61 #include <asm/stacktrace.h> 62 63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 64 #include <linux/stackprotector.h> 65 unsigned long __stack_chk_guard __read_mostly; 66 EXPORT_SYMBOL(__stack_chk_guard); 67 #endif 68 69 /* 70 * Function pointers to optional machine specific functions 71 */ 72 void (*pm_power_off)(void); 73 EXPORT_SYMBOL_GPL(pm_power_off); 74 75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 76 77 /* 78 * This is our default idle handler. 79 */ 80 void arch_cpu_idle(void) 81 { 82 /* 83 * This should do all the clock switching and wait for interrupt 84 * tricks 85 */ 86 trace_cpu_idle_rcuidle(1, smp_processor_id()); 87 cpu_do_idle(); 88 local_irq_enable(); 89 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 90 } 91 92 #ifdef CONFIG_HOTPLUG_CPU 93 void arch_cpu_idle_dead(void) 94 { 95 cpu_die(); 96 } 97 #endif 98 99 /* 100 * Called by kexec, immediately prior to machine_kexec(). 101 * 102 * This must completely disable all secondary CPUs; simply causing those CPUs 103 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 104 * kexec'd kernel to use any and all RAM as it sees fit, without having to 105 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 106 * functionality embodied in disable_nonboot_cpus() to achieve this. 107 */ 108 void machine_shutdown(void) 109 { 110 disable_nonboot_cpus(); 111 } 112 113 /* 114 * Halting simply requires that the secondary CPUs stop performing any 115 * activity (executing tasks, handling interrupts). smp_send_stop() 116 * achieves this. 117 */ 118 void machine_halt(void) 119 { 120 local_irq_disable(); 121 smp_send_stop(); 122 while (1); 123 } 124 125 /* 126 * Power-off simply requires that the secondary CPUs stop performing any 127 * activity (executing tasks, handling interrupts). smp_send_stop() 128 * achieves this. When the system power is turned off, it will take all CPUs 129 * with it. 130 */ 131 void machine_power_off(void) 132 { 133 local_irq_disable(); 134 smp_send_stop(); 135 if (pm_power_off) 136 pm_power_off(); 137 } 138 139 /* 140 * Restart requires that the secondary CPUs stop performing any activity 141 * while the primary CPU resets the system. Systems with multiple CPUs must 142 * provide a HW restart implementation, to ensure that all CPUs reset at once. 143 * This is required so that any code running after reset on the primary CPU 144 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 145 * executing pre-reset code, and using RAM that the primary CPU's code wishes 146 * to use. Implementing such co-ordination would be essentially impossible. 147 */ 148 void machine_restart(char *cmd) 149 { 150 /* Disable interrupts first */ 151 local_irq_disable(); 152 smp_send_stop(); 153 154 /* 155 * UpdateCapsule() depends on the system being reset via 156 * ResetSystem(). 157 */ 158 if (efi_enabled(EFI_RUNTIME_SERVICES)) 159 efi_reboot(reboot_mode, NULL); 160 161 /* Now call the architecture specific reboot code. */ 162 if (arm_pm_restart) 163 arm_pm_restart(reboot_mode, cmd); 164 else 165 do_kernel_restart(cmd); 166 167 /* 168 * Whoops - the architecture was unable to reboot. 169 */ 170 printk("Reboot failed -- System halted\n"); 171 while (1); 172 } 173 174 static void print_pstate(struct pt_regs *regs) 175 { 176 u64 pstate = regs->pstate; 177 178 if (compat_user_mode(regs)) { 179 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 180 pstate, 181 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 182 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 183 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 184 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 185 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 186 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 187 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 188 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 189 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 190 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 191 } else { 192 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", 193 pstate, 194 pstate & PSR_N_BIT ? 'N' : 'n', 195 pstate & PSR_Z_BIT ? 'Z' : 'z', 196 pstate & PSR_C_BIT ? 'C' : 'c', 197 pstate & PSR_V_BIT ? 'V' : 'v', 198 pstate & PSR_D_BIT ? 'D' : 'd', 199 pstate & PSR_A_BIT ? 'A' : 'a', 200 pstate & PSR_I_BIT ? 'I' : 'i', 201 pstate & PSR_F_BIT ? 'F' : 'f', 202 pstate & PSR_PAN_BIT ? '+' : '-', 203 pstate & PSR_UAO_BIT ? '+' : '-'); 204 } 205 } 206 207 void __show_regs(struct pt_regs *regs) 208 { 209 int i, top_reg; 210 u64 lr, sp; 211 212 if (compat_user_mode(regs)) { 213 lr = regs->compat_lr; 214 sp = regs->compat_sp; 215 top_reg = 12; 216 } else { 217 lr = regs->regs[30]; 218 sp = regs->sp; 219 top_reg = 29; 220 } 221 222 show_regs_print_info(KERN_DEFAULT); 223 print_pstate(regs); 224 225 if (!user_mode(regs)) { 226 printk("pc : %pS\n", (void *)regs->pc); 227 printk("lr : %pS\n", (void *)lr); 228 } else { 229 printk("pc : %016llx\n", regs->pc); 230 printk("lr : %016llx\n", lr); 231 } 232 233 printk("sp : %016llx\n", sp); 234 235 i = top_reg; 236 237 while (i >= 0) { 238 printk("x%-2d: %016llx ", i, regs->regs[i]); 239 i--; 240 241 if (i % 2 == 0) { 242 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 243 i--; 244 } 245 246 pr_cont("\n"); 247 } 248 } 249 250 void show_regs(struct pt_regs * regs) 251 { 252 __show_regs(regs); 253 dump_backtrace(regs, NULL); 254 } 255 256 static void tls_thread_flush(void) 257 { 258 write_sysreg(0, tpidr_el0); 259 260 if (is_compat_task()) { 261 current->thread.uw.tp_value = 0; 262 263 /* 264 * We need to ensure ordering between the shadow state and the 265 * hardware state, so that we don't corrupt the hardware state 266 * with a stale shadow state during context switch. 267 */ 268 barrier(); 269 write_sysreg(0, tpidrro_el0); 270 } 271 } 272 273 void flush_thread(void) 274 { 275 fpsimd_flush_thread(); 276 tls_thread_flush(); 277 flush_ptrace_hw_breakpoint(current); 278 } 279 280 void release_thread(struct task_struct *dead_task) 281 { 282 } 283 284 void arch_release_task_struct(struct task_struct *tsk) 285 { 286 fpsimd_release_task(tsk); 287 } 288 289 /* 290 * src and dst may temporarily have aliased sve_state after task_struct 291 * is copied. We cannot fix this properly here, because src may have 292 * live SVE state and dst's thread_info may not exist yet, so tweaking 293 * either src's or dst's TIF_SVE is not safe. 294 * 295 * The unaliasing is done in copy_thread() instead. This works because 296 * dst is not schedulable or traceable until both of these functions 297 * have been called. 298 */ 299 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 300 { 301 if (current->mm) 302 fpsimd_preserve_current_state(); 303 *dst = *src; 304 305 return 0; 306 } 307 308 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 309 310 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 311 unsigned long stk_sz, struct task_struct *p) 312 { 313 struct pt_regs *childregs = task_pt_regs(p); 314 315 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 316 317 /* 318 * Unalias p->thread.sve_state (if any) from the parent task 319 * and disable discard SVE state for p: 320 */ 321 clear_tsk_thread_flag(p, TIF_SVE); 322 p->thread.sve_state = NULL; 323 324 /* 325 * In case p was allocated the same task_struct pointer as some 326 * other recently-exited task, make sure p is disassociated from 327 * any cpu that may have run that now-exited task recently. 328 * Otherwise we could erroneously skip reloading the FPSIMD 329 * registers for p. 330 */ 331 fpsimd_flush_task_state(p); 332 333 if (likely(!(p->flags & PF_KTHREAD))) { 334 *childregs = *current_pt_regs(); 335 childregs->regs[0] = 0; 336 337 /* 338 * Read the current TLS pointer from tpidr_el0 as it may be 339 * out-of-sync with the saved value. 340 */ 341 *task_user_tls(p) = read_sysreg(tpidr_el0); 342 343 if (stack_start) { 344 if (is_compat_thread(task_thread_info(p))) 345 childregs->compat_sp = stack_start; 346 else 347 childregs->sp = stack_start; 348 } 349 350 /* 351 * If a TLS pointer was passed to clone (4th argument), use it 352 * for the new thread. 353 */ 354 if (clone_flags & CLONE_SETTLS) 355 p->thread.uw.tp_value = childregs->regs[3]; 356 } else { 357 memset(childregs, 0, sizeof(struct pt_regs)); 358 childregs->pstate = PSR_MODE_EL1h; 359 if (IS_ENABLED(CONFIG_ARM64_UAO) && 360 cpus_have_const_cap(ARM64_HAS_UAO)) 361 childregs->pstate |= PSR_UAO_BIT; 362 363 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) 364 childregs->pstate |= PSR_SSBS_BIT; 365 366 p->thread.cpu_context.x19 = stack_start; 367 p->thread.cpu_context.x20 = stk_sz; 368 } 369 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 370 p->thread.cpu_context.sp = (unsigned long)childregs; 371 372 ptrace_hw_copy_thread(p); 373 374 return 0; 375 } 376 377 void tls_preserve_current_state(void) 378 { 379 *task_user_tls(current) = read_sysreg(tpidr_el0); 380 } 381 382 static void tls_thread_switch(struct task_struct *next) 383 { 384 tls_preserve_current_state(); 385 386 if (is_compat_thread(task_thread_info(next))) 387 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 388 else if (!arm64_kernel_unmapped_at_el0()) 389 write_sysreg(0, tpidrro_el0); 390 391 write_sysreg(*task_user_tls(next), tpidr_el0); 392 } 393 394 /* Restore the UAO state depending on next's addr_limit */ 395 void uao_thread_switch(struct task_struct *next) 396 { 397 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 398 if (task_thread_info(next)->addr_limit == KERNEL_DS) 399 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 400 else 401 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 402 } 403 } 404 405 /* 406 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 407 * shadow copy so that we can restore this upon entry from userspace. 408 * 409 * This is *only* for exception entry from EL0, and is not valid until we 410 * __switch_to() a user task. 411 */ 412 DEFINE_PER_CPU(struct task_struct *, __entry_task); 413 414 static void entry_task_switch(struct task_struct *next) 415 { 416 __this_cpu_write(__entry_task, next); 417 } 418 419 /* 420 * Thread switching. 421 */ 422 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 423 struct task_struct *next) 424 { 425 struct task_struct *last; 426 427 fpsimd_thread_switch(next); 428 tls_thread_switch(next); 429 hw_breakpoint_thread_switch(next); 430 contextidr_thread_switch(next); 431 entry_task_switch(next); 432 uao_thread_switch(next); 433 ptrauth_thread_switch(next); 434 435 /* 436 * Complete any pending TLB or cache maintenance on this CPU in case 437 * the thread migrates to a different CPU. 438 * This full barrier is also required by the membarrier system 439 * call. 440 */ 441 dsb(ish); 442 443 /* the actual thread switch */ 444 last = cpu_switch_to(prev, next); 445 446 return last; 447 } 448 449 unsigned long get_wchan(struct task_struct *p) 450 { 451 struct stackframe frame; 452 unsigned long stack_page, ret = 0; 453 int count = 0; 454 if (!p || p == current || p->state == TASK_RUNNING) 455 return 0; 456 457 stack_page = (unsigned long)try_get_task_stack(p); 458 if (!stack_page) 459 return 0; 460 461 frame.fp = thread_saved_fp(p); 462 frame.pc = thread_saved_pc(p); 463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 464 frame.graph = 0; 465 #endif 466 do { 467 if (unwind_frame(p, &frame)) 468 goto out; 469 if (!in_sched_functions(frame.pc)) { 470 ret = frame.pc; 471 goto out; 472 } 473 } while (count ++ < 16); 474 475 out: 476 put_task_stack(p); 477 return ret; 478 } 479 480 unsigned long arch_align_stack(unsigned long sp) 481 { 482 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 483 sp -= get_random_int() & ~PAGE_MASK; 484 return sp & ~0xf; 485 } 486 487 unsigned long arch_randomize_brk(struct mm_struct *mm) 488 { 489 if (is_compat_task()) 490 return randomize_page(mm->brk, SZ_32M); 491 else 492 return randomize_page(mm->brk, SZ_1G); 493 } 494 495 /* 496 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 497 */ 498 void arch_setup_new_exec(void) 499 { 500 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 501 502 ptrauth_thread_init_user(current); 503 } 504