xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 1d7a0395)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/mman.h>
22 #include <linux/mm.h>
23 #include <linux/nospec.h>
24 #include <linux/stddef.h>
25 #include <linux/sysctl.h>
26 #include <linux/unistd.h>
27 #include <linux/user.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/cpu.h>
33 #include <linux/elfcore.h>
34 #include <linux/pm.h>
35 #include <linux/tick.h>
36 #include <linux/utsname.h>
37 #include <linux/uaccess.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/personality.h>
41 #include <linux/notifier.h>
42 #include <trace/events/power.h>
43 #include <linux/percpu.h>
44 #include <linux/thread_info.h>
45 #include <linux/prctl.h>
46 
47 #include <asm/alternative.h>
48 #include <asm/compat.h>
49 #include <asm/cpufeature.h>
50 #include <asm/cacheflush.h>
51 #include <asm/exec.h>
52 #include <asm/fpsimd.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
74 
75 #ifdef CONFIG_HOTPLUG_CPU
76 void arch_cpu_idle_dead(void)
77 {
78        cpu_die();
79 }
80 #endif
81 
82 /*
83  * Called by kexec, immediately prior to machine_kexec().
84  *
85  * This must completely disable all secondary CPUs; simply causing those CPUs
86  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
87  * kexec'd kernel to use any and all RAM as it sees fit, without having to
88  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
89  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
90  */
91 void machine_shutdown(void)
92 {
93 	smp_shutdown_nonboot_cpus(reboot_cpu);
94 }
95 
96 /*
97  * Halting simply requires that the secondary CPUs stop performing any
98  * activity (executing tasks, handling interrupts). smp_send_stop()
99  * achieves this.
100  */
101 void machine_halt(void)
102 {
103 	local_irq_disable();
104 	smp_send_stop();
105 	while (1);
106 }
107 
108 /*
109  * Power-off simply requires that the secondary CPUs stop performing any
110  * activity (executing tasks, handling interrupts). smp_send_stop()
111  * achieves this. When the system power is turned off, it will take all CPUs
112  * with it.
113  */
114 void machine_power_off(void)
115 {
116 	local_irq_disable();
117 	smp_send_stop();
118 	if (pm_power_off)
119 		pm_power_off();
120 }
121 
122 /*
123  * Restart requires that the secondary CPUs stop performing any activity
124  * while the primary CPU resets the system. Systems with multiple CPUs must
125  * provide a HW restart implementation, to ensure that all CPUs reset at once.
126  * This is required so that any code running after reset on the primary CPU
127  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
128  * executing pre-reset code, and using RAM that the primary CPU's code wishes
129  * to use. Implementing such co-ordination would be essentially impossible.
130  */
131 void machine_restart(char *cmd)
132 {
133 	/* Disable interrupts first */
134 	local_irq_disable();
135 	smp_send_stop();
136 
137 	/*
138 	 * UpdateCapsule() depends on the system being reset via
139 	 * ResetSystem().
140 	 */
141 	if (efi_enabled(EFI_RUNTIME_SERVICES))
142 		efi_reboot(reboot_mode, NULL);
143 
144 	/* Now call the architecture specific reboot code. */
145 	if (arm_pm_restart)
146 		arm_pm_restart(reboot_mode, cmd);
147 	else
148 		do_kernel_restart(cmd);
149 
150 	/*
151 	 * Whoops - the architecture was unable to reboot.
152 	 */
153 	printk("Reboot failed -- System halted\n");
154 	while (1);
155 }
156 
157 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
158 static const char *const btypes[] = {
159 	bstr(NONE, "--"),
160 	bstr(  JC, "jc"),
161 	bstr(   C, "-c"),
162 	bstr(  J , "j-")
163 };
164 #undef bstr
165 
166 static void print_pstate(struct pt_regs *regs)
167 {
168 	u64 pstate = regs->pstate;
169 
170 	if (compat_user_mode(regs)) {
171 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
172 			pstate,
173 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
174 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
175 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
176 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
177 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
178 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
179 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
180 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
181 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
182 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
183 	} else {
184 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
185 					       PSR_BTYPE_SHIFT];
186 
187 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
188 			pstate,
189 			pstate & PSR_N_BIT ? 'N' : 'n',
190 			pstate & PSR_Z_BIT ? 'Z' : 'z',
191 			pstate & PSR_C_BIT ? 'C' : 'c',
192 			pstate & PSR_V_BIT ? 'V' : 'v',
193 			pstate & PSR_D_BIT ? 'D' : 'd',
194 			pstate & PSR_A_BIT ? 'A' : 'a',
195 			pstate & PSR_I_BIT ? 'I' : 'i',
196 			pstate & PSR_F_BIT ? 'F' : 'f',
197 			pstate & PSR_PAN_BIT ? '+' : '-',
198 			pstate & PSR_UAO_BIT ? '+' : '-',
199 			pstate & PSR_TCO_BIT ? '+' : '-',
200 			btype_str);
201 	}
202 }
203 
204 void __show_regs(struct pt_regs *regs)
205 {
206 	int i, top_reg;
207 	u64 lr, sp;
208 
209 	if (compat_user_mode(regs)) {
210 		lr = regs->compat_lr;
211 		sp = regs->compat_sp;
212 		top_reg = 12;
213 	} else {
214 		lr = regs->regs[30];
215 		sp = regs->sp;
216 		top_reg = 29;
217 	}
218 
219 	show_regs_print_info(KERN_DEFAULT);
220 	print_pstate(regs);
221 
222 	if (!user_mode(regs)) {
223 		printk("pc : %pS\n", (void *)regs->pc);
224 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
225 	} else {
226 		printk("pc : %016llx\n", regs->pc);
227 		printk("lr : %016llx\n", lr);
228 	}
229 
230 	printk("sp : %016llx\n", sp);
231 
232 	if (system_uses_irq_prio_masking())
233 		printk("pmr_save: %08llx\n", regs->pmr_save);
234 
235 	i = top_reg;
236 
237 	while (i >= 0) {
238 		printk("x%-2d: %016llx", i, regs->regs[i]);
239 
240 		while (i-- % 3)
241 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
242 
243 		pr_cont("\n");
244 	}
245 }
246 
247 void show_regs(struct pt_regs *regs)
248 {
249 	__show_regs(regs);
250 	dump_backtrace(regs, NULL, KERN_DEFAULT);
251 }
252 
253 static void tls_thread_flush(void)
254 {
255 	write_sysreg(0, tpidr_el0);
256 
257 	if (is_compat_task()) {
258 		current->thread.uw.tp_value = 0;
259 
260 		/*
261 		 * We need to ensure ordering between the shadow state and the
262 		 * hardware state, so that we don't corrupt the hardware state
263 		 * with a stale shadow state during context switch.
264 		 */
265 		barrier();
266 		write_sysreg(0, tpidrro_el0);
267 	}
268 }
269 
270 static void flush_tagged_addr_state(void)
271 {
272 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 		clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275 
276 void flush_thread(void)
277 {
278 	fpsimd_flush_thread();
279 	tls_thread_flush();
280 	flush_ptrace_hw_breakpoint(current);
281 	flush_tagged_addr_state();
282 }
283 
284 void release_thread(struct task_struct *dead_task)
285 {
286 }
287 
288 void arch_release_task_struct(struct task_struct *tsk)
289 {
290 	fpsimd_release_task(tsk);
291 }
292 
293 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
294 {
295 	if (current->mm)
296 		fpsimd_preserve_current_state();
297 	*dst = *src;
298 
299 	/* We rely on the above assignment to initialize dst's thread_flags: */
300 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
301 
302 	/*
303 	 * Detach src's sve_state (if any) from dst so that it does not
304 	 * get erroneously used or freed prematurely.  dst's sve_state
305 	 * will be allocated on demand later on if dst uses SVE.
306 	 * For consistency, also clear TIF_SVE here: this could be done
307 	 * later in copy_process(), but to avoid tripping up future
308 	 * maintainers it is best not to leave TIF_SVE and sve_state in
309 	 * an inconsistent state, even temporarily.
310 	 */
311 	dst->thread.sve_state = NULL;
312 	clear_tsk_thread_flag(dst, TIF_SVE);
313 
314 	/* clear any pending asynchronous tag fault raised by the parent */
315 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
316 
317 	return 0;
318 }
319 
320 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
321 
322 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
323 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
324 {
325 	struct pt_regs *childregs = task_pt_regs(p);
326 
327 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
328 
329 	/*
330 	 * In case p was allocated the same task_struct pointer as some
331 	 * other recently-exited task, make sure p is disassociated from
332 	 * any cpu that may have run that now-exited task recently.
333 	 * Otherwise we could erroneously skip reloading the FPSIMD
334 	 * registers for p.
335 	 */
336 	fpsimd_flush_task_state(p);
337 
338 	ptrauth_thread_init_kernel(p);
339 
340 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
341 		*childregs = *current_pt_regs();
342 		childregs->regs[0] = 0;
343 
344 		/*
345 		 * Read the current TLS pointer from tpidr_el0 as it may be
346 		 * out-of-sync with the saved value.
347 		 */
348 		*task_user_tls(p) = read_sysreg(tpidr_el0);
349 
350 		if (stack_start) {
351 			if (is_compat_thread(task_thread_info(p)))
352 				childregs->compat_sp = stack_start;
353 			else
354 				childregs->sp = stack_start;
355 		}
356 
357 		/*
358 		 * If a TLS pointer was passed to clone, use it for the new
359 		 * thread.
360 		 */
361 		if (clone_flags & CLONE_SETTLS)
362 			p->thread.uw.tp_value = tls;
363 	} else {
364 		/*
365 		 * A kthread has no context to ERET to, so ensure any buggy
366 		 * ERET is treated as an illegal exception return.
367 		 *
368 		 * When a user task is created from a kthread, childregs will
369 		 * be initialized by start_thread() or start_compat_thread().
370 		 */
371 		memset(childregs, 0, sizeof(struct pt_regs));
372 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
373 
374 		p->thread.cpu_context.x19 = stack_start;
375 		p->thread.cpu_context.x20 = stk_sz;
376 	}
377 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
378 	p->thread.cpu_context.sp = (unsigned long)childregs;
379 	/*
380 	 * For the benefit of the unwinder, set up childregs->stackframe
381 	 * as the final frame for the new task.
382 	 */
383 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
384 
385 	ptrace_hw_copy_thread(p);
386 
387 	return 0;
388 }
389 
390 void tls_preserve_current_state(void)
391 {
392 	*task_user_tls(current) = read_sysreg(tpidr_el0);
393 }
394 
395 static void tls_thread_switch(struct task_struct *next)
396 {
397 	tls_preserve_current_state();
398 
399 	if (is_compat_thread(task_thread_info(next)))
400 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
401 	else if (!arm64_kernel_unmapped_at_el0())
402 		write_sysreg(0, tpidrro_el0);
403 
404 	write_sysreg(*task_user_tls(next), tpidr_el0);
405 }
406 
407 /*
408  * Force SSBS state on context-switch, since it may be lost after migrating
409  * from a CPU which treats the bit as RES0 in a heterogeneous system.
410  */
411 static void ssbs_thread_switch(struct task_struct *next)
412 {
413 	/*
414 	 * Nothing to do for kernel threads, but 'regs' may be junk
415 	 * (e.g. idle task) so check the flags and bail early.
416 	 */
417 	if (unlikely(next->flags & PF_KTHREAD))
418 		return;
419 
420 	/*
421 	 * If all CPUs implement the SSBS extension, then we just need to
422 	 * context-switch the PSTATE field.
423 	 */
424 	if (cpus_have_const_cap(ARM64_SSBS))
425 		return;
426 
427 	spectre_v4_enable_task_mitigation(next);
428 }
429 
430 /*
431  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
432  * shadow copy so that we can restore this upon entry from userspace.
433  *
434  * This is *only* for exception entry from EL0, and is not valid until we
435  * __switch_to() a user task.
436  */
437 DEFINE_PER_CPU(struct task_struct *, __entry_task);
438 
439 static void entry_task_switch(struct task_struct *next)
440 {
441 	__this_cpu_write(__entry_task, next);
442 }
443 
444 /*
445  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
446  * Assuming the virtual counter is enabled at the beginning of times:
447  *
448  * - disable access when switching from a 64bit task to a 32bit task
449  * - enable access when switching from a 32bit task to a 64bit task
450  */
451 static void erratum_1418040_thread_switch(struct task_struct *prev,
452 					  struct task_struct *next)
453 {
454 	bool prev32, next32;
455 	u64 val;
456 
457 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
458 		return;
459 
460 	prev32 = is_compat_thread(task_thread_info(prev));
461 	next32 = is_compat_thread(task_thread_info(next));
462 
463 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
464 		return;
465 
466 	val = read_sysreg(cntkctl_el1);
467 
468 	if (!next32)
469 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
470 	else
471 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
472 
473 	write_sysreg(val, cntkctl_el1);
474 }
475 
476 static void compat_thread_switch(struct task_struct *next)
477 {
478 	if (!is_compat_thread(task_thread_info(next)))
479 		return;
480 
481 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
482 		set_tsk_thread_flag(next, TIF_NOTIFY_RESUME);
483 }
484 
485 static void update_sctlr_el1(u64 sctlr)
486 {
487 	/*
488 	 * EnIA must not be cleared while in the kernel as this is necessary for
489 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
490 	 */
491 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
492 
493 	/* ISB required for the kernel uaccess routines when setting TCF0. */
494 	isb();
495 }
496 
497 void set_task_sctlr_el1(u64 sctlr)
498 {
499 	/*
500 	 * __switch_to() checks current->thread.sctlr as an
501 	 * optimisation. Disable preemption so that it does not see
502 	 * the variable update before the SCTLR_EL1 one.
503 	 */
504 	preempt_disable();
505 	current->thread.sctlr_user = sctlr;
506 	update_sctlr_el1(sctlr);
507 	preempt_enable();
508 }
509 
510 /*
511  * Thread switching.
512  */
513 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
514 				struct task_struct *next)
515 {
516 	struct task_struct *last;
517 
518 	fpsimd_thread_switch(next);
519 	tls_thread_switch(next);
520 	hw_breakpoint_thread_switch(next);
521 	contextidr_thread_switch(next);
522 	entry_task_switch(next);
523 	ssbs_thread_switch(next);
524 	erratum_1418040_thread_switch(prev, next);
525 	ptrauth_thread_switch_user(next);
526 	compat_thread_switch(next);
527 
528 	/*
529 	 * Complete any pending TLB or cache maintenance on this CPU in case
530 	 * the thread migrates to a different CPU.
531 	 * This full barrier is also required by the membarrier system
532 	 * call.
533 	 */
534 	dsb(ish);
535 
536 	/*
537 	 * MTE thread switching must happen after the DSB above to ensure that
538 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
539 	 * registers.
540 	 */
541 	mte_thread_switch(next);
542 	/* avoid expensive SCTLR_EL1 accesses if no change */
543 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
544 		update_sctlr_el1(next->thread.sctlr_user);
545 
546 	/* the actual thread switch */
547 	last = cpu_switch_to(prev, next);
548 
549 	return last;
550 }
551 
552 unsigned long get_wchan(struct task_struct *p)
553 {
554 	struct stackframe frame;
555 	unsigned long stack_page, ret = 0;
556 	int count = 0;
557 	if (!p || p == current || task_is_running(p))
558 		return 0;
559 
560 	stack_page = (unsigned long)try_get_task_stack(p);
561 	if (!stack_page)
562 		return 0;
563 
564 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
565 
566 	do {
567 		if (unwind_frame(p, &frame))
568 			goto out;
569 		if (!in_sched_functions(frame.pc)) {
570 			ret = frame.pc;
571 			goto out;
572 		}
573 	} while (count++ < 16);
574 
575 out:
576 	put_task_stack(p);
577 	return ret;
578 }
579 
580 unsigned long arch_align_stack(unsigned long sp)
581 {
582 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
583 		sp -= get_random_int() & ~PAGE_MASK;
584 	return sp & ~0xf;
585 }
586 
587 /*
588  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
589  */
590 void arch_setup_new_exec(void)
591 {
592 	unsigned long mmflags = 0;
593 
594 	if (is_compat_task()) {
595 		mmflags = MMCF_AARCH32;
596 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
597 			set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
598 	}
599 
600 	current->mm->context.flags = mmflags;
601 	ptrauth_thread_init_user();
602 	mte_thread_init_user();
603 
604 	if (task_spec_ssb_noexec(current)) {
605 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
606 					 PR_SPEC_ENABLE);
607 	}
608 }
609 
610 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
611 /*
612  * Control the relaxed ABI allowing tagged user addresses into the kernel.
613  */
614 static unsigned int tagged_addr_disabled;
615 
616 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
617 {
618 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
619 	struct thread_info *ti = task_thread_info(task);
620 
621 	if (is_compat_thread(ti))
622 		return -EINVAL;
623 
624 	if (system_supports_mte())
625 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
626 
627 	if (arg & ~valid_mask)
628 		return -EINVAL;
629 
630 	/*
631 	 * Do not allow the enabling of the tagged address ABI if globally
632 	 * disabled via sysctl abi.tagged_addr_disabled.
633 	 */
634 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
635 		return -EINVAL;
636 
637 	if (set_mte_ctrl(task, arg) != 0)
638 		return -EINVAL;
639 
640 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
641 
642 	return 0;
643 }
644 
645 long get_tagged_addr_ctrl(struct task_struct *task)
646 {
647 	long ret = 0;
648 	struct thread_info *ti = task_thread_info(task);
649 
650 	if (is_compat_thread(ti))
651 		return -EINVAL;
652 
653 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
654 		ret = PR_TAGGED_ADDR_ENABLE;
655 
656 	ret |= get_mte_ctrl(task);
657 
658 	return ret;
659 }
660 
661 /*
662  * Global sysctl to disable the tagged user addresses support. This control
663  * only prevents the tagged address ABI enabling via prctl() and does not
664  * disable it for tasks that already opted in to the relaxed ABI.
665  */
666 
667 static struct ctl_table tagged_addr_sysctl_table[] = {
668 	{
669 		.procname	= "tagged_addr_disabled",
670 		.mode		= 0644,
671 		.data		= &tagged_addr_disabled,
672 		.maxlen		= sizeof(int),
673 		.proc_handler	= proc_dointvec_minmax,
674 		.extra1		= SYSCTL_ZERO,
675 		.extra2		= SYSCTL_ONE,
676 	},
677 	{ }
678 };
679 
680 static int __init tagged_addr_init(void)
681 {
682 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
683 		return -EINVAL;
684 	return 0;
685 }
686 
687 core_initcall(tagged_addr_init);
688 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
689 
690 #ifdef CONFIG_BINFMT_ELF
691 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
692 			 bool has_interp, bool is_interp)
693 {
694 	/*
695 	 * For dynamically linked executables the interpreter is
696 	 * responsible for setting PROT_BTI on everything except
697 	 * itself.
698 	 */
699 	if (is_interp != has_interp)
700 		return prot;
701 
702 	if (!(state->flags & ARM64_ELF_BTI))
703 		return prot;
704 
705 	if (prot & PROT_EXEC)
706 		prot |= PROT_BTI;
707 
708 	return prot;
709 }
710 #endif
711