1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/mman.h> 22 #include <linux/mm.h> 23 #include <linux/nospec.h> 24 #include <linux/stddef.h> 25 #include <linux/sysctl.h> 26 #include <linux/unistd.h> 27 #include <linux/user.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/interrupt.h> 31 #include <linux/init.h> 32 #include <linux/cpu.h> 33 #include <linux/elfcore.h> 34 #include <linux/pm.h> 35 #include <linux/tick.h> 36 #include <linux/utsname.h> 37 #include <linux/uaccess.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/personality.h> 41 #include <linux/notifier.h> 42 #include <trace/events/power.h> 43 #include <linux/percpu.h> 44 #include <linux/thread_info.h> 45 #include <linux/prctl.h> 46 47 #include <asm/alternative.h> 48 #include <asm/compat.h> 49 #include <asm/cpufeature.h> 50 #include <asm/cacheflush.h> 51 #include <asm/exec.h> 52 #include <asm/fpsimd.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __read_mostly; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 74 75 #ifdef CONFIG_HOTPLUG_CPU 76 void arch_cpu_idle_dead(void) 77 { 78 cpu_die(); 79 } 80 #endif 81 82 /* 83 * Called by kexec, immediately prior to machine_kexec(). 84 * 85 * This must completely disable all secondary CPUs; simply causing those CPUs 86 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 87 * kexec'd kernel to use any and all RAM as it sees fit, without having to 88 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 89 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 90 */ 91 void machine_shutdown(void) 92 { 93 smp_shutdown_nonboot_cpus(reboot_cpu); 94 } 95 96 /* 97 * Halting simply requires that the secondary CPUs stop performing any 98 * activity (executing tasks, handling interrupts). smp_send_stop() 99 * achieves this. 100 */ 101 void machine_halt(void) 102 { 103 local_irq_disable(); 104 smp_send_stop(); 105 while (1); 106 } 107 108 /* 109 * Power-off simply requires that the secondary CPUs stop performing any 110 * activity (executing tasks, handling interrupts). smp_send_stop() 111 * achieves this. When the system power is turned off, it will take all CPUs 112 * with it. 113 */ 114 void machine_power_off(void) 115 { 116 local_irq_disable(); 117 smp_send_stop(); 118 if (pm_power_off) 119 pm_power_off(); 120 } 121 122 /* 123 * Restart requires that the secondary CPUs stop performing any activity 124 * while the primary CPU resets the system. Systems with multiple CPUs must 125 * provide a HW restart implementation, to ensure that all CPUs reset at once. 126 * This is required so that any code running after reset on the primary CPU 127 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 128 * executing pre-reset code, and using RAM that the primary CPU's code wishes 129 * to use. Implementing such co-ordination would be essentially impossible. 130 */ 131 void machine_restart(char *cmd) 132 { 133 /* Disable interrupts first */ 134 local_irq_disable(); 135 smp_send_stop(); 136 137 /* 138 * UpdateCapsule() depends on the system being reset via 139 * ResetSystem(). 140 */ 141 if (efi_enabled(EFI_RUNTIME_SERVICES)) 142 efi_reboot(reboot_mode, NULL); 143 144 /* Now call the architecture specific reboot code. */ 145 if (arm_pm_restart) 146 arm_pm_restart(reboot_mode, cmd); 147 else 148 do_kernel_restart(cmd); 149 150 /* 151 * Whoops - the architecture was unable to reboot. 152 */ 153 printk("Reboot failed -- System halted\n"); 154 while (1); 155 } 156 157 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 158 static const char *const btypes[] = { 159 bstr(NONE, "--"), 160 bstr( JC, "jc"), 161 bstr( C, "-c"), 162 bstr( J , "j-") 163 }; 164 #undef bstr 165 166 static void print_pstate(struct pt_regs *regs) 167 { 168 u64 pstate = regs->pstate; 169 170 if (compat_user_mode(regs)) { 171 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 172 pstate, 173 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 174 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 175 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 176 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 177 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 178 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 179 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 180 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 181 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 182 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 183 } else { 184 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 185 PSR_BTYPE_SHIFT]; 186 187 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 188 pstate, 189 pstate & PSR_N_BIT ? 'N' : 'n', 190 pstate & PSR_Z_BIT ? 'Z' : 'z', 191 pstate & PSR_C_BIT ? 'C' : 'c', 192 pstate & PSR_V_BIT ? 'V' : 'v', 193 pstate & PSR_D_BIT ? 'D' : 'd', 194 pstate & PSR_A_BIT ? 'A' : 'a', 195 pstate & PSR_I_BIT ? 'I' : 'i', 196 pstate & PSR_F_BIT ? 'F' : 'f', 197 pstate & PSR_PAN_BIT ? '+' : '-', 198 pstate & PSR_UAO_BIT ? '+' : '-', 199 pstate & PSR_TCO_BIT ? '+' : '-', 200 btype_str); 201 } 202 } 203 204 void __show_regs(struct pt_regs *regs) 205 { 206 int i, top_reg; 207 u64 lr, sp; 208 209 if (compat_user_mode(regs)) { 210 lr = regs->compat_lr; 211 sp = regs->compat_sp; 212 top_reg = 12; 213 } else { 214 lr = regs->regs[30]; 215 sp = regs->sp; 216 top_reg = 29; 217 } 218 219 show_regs_print_info(KERN_DEFAULT); 220 print_pstate(regs); 221 222 if (!user_mode(regs)) { 223 printk("pc : %pS\n", (void *)regs->pc); 224 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 225 } else { 226 printk("pc : %016llx\n", regs->pc); 227 printk("lr : %016llx\n", lr); 228 } 229 230 printk("sp : %016llx\n", sp); 231 232 if (system_uses_irq_prio_masking()) 233 printk("pmr_save: %08llx\n", regs->pmr_save); 234 235 i = top_reg; 236 237 while (i >= 0) { 238 printk("x%-2d: %016llx", i, regs->regs[i]); 239 240 while (i-- % 3) 241 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 242 243 pr_cont("\n"); 244 } 245 } 246 247 void show_regs(struct pt_regs *regs) 248 { 249 __show_regs(regs); 250 dump_backtrace(regs, NULL, KERN_DEFAULT); 251 } 252 253 static void tls_thread_flush(void) 254 { 255 write_sysreg(0, tpidr_el0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 void flush_thread(void) 277 { 278 fpsimd_flush_thread(); 279 tls_thread_flush(); 280 flush_ptrace_hw_breakpoint(current); 281 flush_tagged_addr_state(); 282 } 283 284 void release_thread(struct task_struct *dead_task) 285 { 286 } 287 288 void arch_release_task_struct(struct task_struct *tsk) 289 { 290 fpsimd_release_task(tsk); 291 } 292 293 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 294 { 295 if (current->mm) 296 fpsimd_preserve_current_state(); 297 *dst = *src; 298 299 /* We rely on the above assignment to initialize dst's thread_flags: */ 300 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 301 302 /* 303 * Detach src's sve_state (if any) from dst so that it does not 304 * get erroneously used or freed prematurely. dst's sve_state 305 * will be allocated on demand later on if dst uses SVE. 306 * For consistency, also clear TIF_SVE here: this could be done 307 * later in copy_process(), but to avoid tripping up future 308 * maintainers it is best not to leave TIF_SVE and sve_state in 309 * an inconsistent state, even temporarily. 310 */ 311 dst->thread.sve_state = NULL; 312 clear_tsk_thread_flag(dst, TIF_SVE); 313 314 /* clear any pending asynchronous tag fault raised by the parent */ 315 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 316 317 return 0; 318 } 319 320 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 321 322 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 323 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 324 { 325 struct pt_regs *childregs = task_pt_regs(p); 326 327 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 328 329 /* 330 * In case p was allocated the same task_struct pointer as some 331 * other recently-exited task, make sure p is disassociated from 332 * any cpu that may have run that now-exited task recently. 333 * Otherwise we could erroneously skip reloading the FPSIMD 334 * registers for p. 335 */ 336 fpsimd_flush_task_state(p); 337 338 ptrauth_thread_init_kernel(p); 339 340 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 341 *childregs = *current_pt_regs(); 342 childregs->regs[0] = 0; 343 344 /* 345 * Read the current TLS pointer from tpidr_el0 as it may be 346 * out-of-sync with the saved value. 347 */ 348 *task_user_tls(p) = read_sysreg(tpidr_el0); 349 350 if (stack_start) { 351 if (is_compat_thread(task_thread_info(p))) 352 childregs->compat_sp = stack_start; 353 else 354 childregs->sp = stack_start; 355 } 356 357 /* 358 * If a TLS pointer was passed to clone, use it for the new 359 * thread. 360 */ 361 if (clone_flags & CLONE_SETTLS) 362 p->thread.uw.tp_value = tls; 363 } else { 364 /* 365 * A kthread has no context to ERET to, so ensure any buggy 366 * ERET is treated as an illegal exception return. 367 * 368 * When a user task is created from a kthread, childregs will 369 * be initialized by start_thread() or start_compat_thread(). 370 */ 371 memset(childregs, 0, sizeof(struct pt_regs)); 372 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 373 374 p->thread.cpu_context.x19 = stack_start; 375 p->thread.cpu_context.x20 = stk_sz; 376 } 377 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 378 p->thread.cpu_context.sp = (unsigned long)childregs; 379 /* 380 * For the benefit of the unwinder, set up childregs->stackframe 381 * as the final frame for the new task. 382 */ 383 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 384 385 ptrace_hw_copy_thread(p); 386 387 return 0; 388 } 389 390 void tls_preserve_current_state(void) 391 { 392 *task_user_tls(current) = read_sysreg(tpidr_el0); 393 } 394 395 static void tls_thread_switch(struct task_struct *next) 396 { 397 tls_preserve_current_state(); 398 399 if (is_compat_thread(task_thread_info(next))) 400 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 401 else if (!arm64_kernel_unmapped_at_el0()) 402 write_sysreg(0, tpidrro_el0); 403 404 write_sysreg(*task_user_tls(next), tpidr_el0); 405 } 406 407 /* 408 * Force SSBS state on context-switch, since it may be lost after migrating 409 * from a CPU which treats the bit as RES0 in a heterogeneous system. 410 */ 411 static void ssbs_thread_switch(struct task_struct *next) 412 { 413 /* 414 * Nothing to do for kernel threads, but 'regs' may be junk 415 * (e.g. idle task) so check the flags and bail early. 416 */ 417 if (unlikely(next->flags & PF_KTHREAD)) 418 return; 419 420 /* 421 * If all CPUs implement the SSBS extension, then we just need to 422 * context-switch the PSTATE field. 423 */ 424 if (cpus_have_const_cap(ARM64_SSBS)) 425 return; 426 427 spectre_v4_enable_task_mitigation(next); 428 } 429 430 /* 431 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 432 * shadow copy so that we can restore this upon entry from userspace. 433 * 434 * This is *only* for exception entry from EL0, and is not valid until we 435 * __switch_to() a user task. 436 */ 437 DEFINE_PER_CPU(struct task_struct *, __entry_task); 438 439 static void entry_task_switch(struct task_struct *next) 440 { 441 __this_cpu_write(__entry_task, next); 442 } 443 444 /* 445 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 446 * Assuming the virtual counter is enabled at the beginning of times: 447 * 448 * - disable access when switching from a 64bit task to a 32bit task 449 * - enable access when switching from a 32bit task to a 64bit task 450 */ 451 static void erratum_1418040_thread_switch(struct task_struct *prev, 452 struct task_struct *next) 453 { 454 bool prev32, next32; 455 u64 val; 456 457 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 458 return; 459 460 prev32 = is_compat_thread(task_thread_info(prev)); 461 next32 = is_compat_thread(task_thread_info(next)); 462 463 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 464 return; 465 466 val = read_sysreg(cntkctl_el1); 467 468 if (!next32) 469 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 470 else 471 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 472 473 write_sysreg(val, cntkctl_el1); 474 } 475 476 static void compat_thread_switch(struct task_struct *next) 477 { 478 if (!is_compat_thread(task_thread_info(next))) 479 return; 480 481 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 482 set_tsk_thread_flag(next, TIF_NOTIFY_RESUME); 483 } 484 485 static void update_sctlr_el1(u64 sctlr) 486 { 487 /* 488 * EnIA must not be cleared while in the kernel as this is necessary for 489 * in-kernel PAC. It will be cleared on kernel exit if needed. 490 */ 491 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 492 493 /* ISB required for the kernel uaccess routines when setting TCF0. */ 494 isb(); 495 } 496 497 void set_task_sctlr_el1(u64 sctlr) 498 { 499 /* 500 * __switch_to() checks current->thread.sctlr as an 501 * optimisation. Disable preemption so that it does not see 502 * the variable update before the SCTLR_EL1 one. 503 */ 504 preempt_disable(); 505 current->thread.sctlr_user = sctlr; 506 update_sctlr_el1(sctlr); 507 preempt_enable(); 508 } 509 510 /* 511 * Thread switching. 512 */ 513 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 514 struct task_struct *next) 515 { 516 struct task_struct *last; 517 518 fpsimd_thread_switch(next); 519 tls_thread_switch(next); 520 hw_breakpoint_thread_switch(next); 521 contextidr_thread_switch(next); 522 entry_task_switch(next); 523 ssbs_thread_switch(next); 524 erratum_1418040_thread_switch(prev, next); 525 ptrauth_thread_switch_user(next); 526 compat_thread_switch(next); 527 528 /* 529 * Complete any pending TLB or cache maintenance on this CPU in case 530 * the thread migrates to a different CPU. 531 * This full barrier is also required by the membarrier system 532 * call. 533 */ 534 dsb(ish); 535 536 /* 537 * MTE thread switching must happen after the DSB above to ensure that 538 * any asynchronous tag check faults have been logged in the TFSR*_EL1 539 * registers. 540 */ 541 mte_thread_switch(next); 542 /* avoid expensive SCTLR_EL1 accesses if no change */ 543 if (prev->thread.sctlr_user != next->thread.sctlr_user) 544 update_sctlr_el1(next->thread.sctlr_user); 545 546 /* the actual thread switch */ 547 last = cpu_switch_to(prev, next); 548 549 return last; 550 } 551 552 unsigned long get_wchan(struct task_struct *p) 553 { 554 struct stackframe frame; 555 unsigned long stack_page, ret = 0; 556 int count = 0; 557 if (!p || p == current || task_is_running(p)) 558 return 0; 559 560 stack_page = (unsigned long)try_get_task_stack(p); 561 if (!stack_page) 562 return 0; 563 564 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 565 566 do { 567 if (unwind_frame(p, &frame)) 568 goto out; 569 if (!in_sched_functions(frame.pc)) { 570 ret = frame.pc; 571 goto out; 572 } 573 } while (count++ < 16); 574 575 out: 576 put_task_stack(p); 577 return ret; 578 } 579 580 unsigned long arch_align_stack(unsigned long sp) 581 { 582 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 583 sp -= get_random_int() & ~PAGE_MASK; 584 return sp & ~0xf; 585 } 586 587 /* 588 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 589 */ 590 void arch_setup_new_exec(void) 591 { 592 unsigned long mmflags = 0; 593 594 if (is_compat_task()) { 595 mmflags = MMCF_AARCH32; 596 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 597 set_tsk_thread_flag(current, TIF_NOTIFY_RESUME); 598 } 599 600 current->mm->context.flags = mmflags; 601 ptrauth_thread_init_user(); 602 mte_thread_init_user(); 603 604 if (task_spec_ssb_noexec(current)) { 605 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 606 PR_SPEC_ENABLE); 607 } 608 } 609 610 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 611 /* 612 * Control the relaxed ABI allowing tagged user addresses into the kernel. 613 */ 614 static unsigned int tagged_addr_disabled; 615 616 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 617 { 618 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 619 struct thread_info *ti = task_thread_info(task); 620 621 if (is_compat_thread(ti)) 622 return -EINVAL; 623 624 if (system_supports_mte()) 625 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 626 627 if (arg & ~valid_mask) 628 return -EINVAL; 629 630 /* 631 * Do not allow the enabling of the tagged address ABI if globally 632 * disabled via sysctl abi.tagged_addr_disabled. 633 */ 634 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 635 return -EINVAL; 636 637 if (set_mte_ctrl(task, arg) != 0) 638 return -EINVAL; 639 640 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 641 642 return 0; 643 } 644 645 long get_tagged_addr_ctrl(struct task_struct *task) 646 { 647 long ret = 0; 648 struct thread_info *ti = task_thread_info(task); 649 650 if (is_compat_thread(ti)) 651 return -EINVAL; 652 653 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 654 ret = PR_TAGGED_ADDR_ENABLE; 655 656 ret |= get_mte_ctrl(task); 657 658 return ret; 659 } 660 661 /* 662 * Global sysctl to disable the tagged user addresses support. This control 663 * only prevents the tagged address ABI enabling via prctl() and does not 664 * disable it for tasks that already opted in to the relaxed ABI. 665 */ 666 667 static struct ctl_table tagged_addr_sysctl_table[] = { 668 { 669 .procname = "tagged_addr_disabled", 670 .mode = 0644, 671 .data = &tagged_addr_disabled, 672 .maxlen = sizeof(int), 673 .proc_handler = proc_dointvec_minmax, 674 .extra1 = SYSCTL_ZERO, 675 .extra2 = SYSCTL_ONE, 676 }, 677 { } 678 }; 679 680 static int __init tagged_addr_init(void) 681 { 682 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 683 return -EINVAL; 684 return 0; 685 } 686 687 core_initcall(tagged_addr_init); 688 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 689 690 #ifdef CONFIG_BINFMT_ELF 691 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 692 bool has_interp, bool is_interp) 693 { 694 /* 695 * For dynamically linked executables the interpreter is 696 * responsible for setting PROT_BTI on everything except 697 * itself. 698 */ 699 if (is_interp != has_interp) 700 return prot; 701 702 if (!(state->flags & ARM64_ELF_BTI)) 703 return prot; 704 705 if (prot & PROT_EXEC) 706 prot |= PROT_BTI; 707 708 return prot; 709 } 710 #endif 711