xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 0c6dfa75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/compat.h>
47 #include <asm/cpufeature.h>
48 #include <asm/cacheflush.h>
49 #include <asm/exec.h>
50 #include <asm/fpsimd.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mte.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56 #include <asm/switch_to.h>
57 #include <asm/system_misc.h>
58 
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __ro_after_init;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64 
65 /*
66  * Function pointers to optional machine specific functions
67  */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 void __noreturn arch_cpu_idle_dead(void)
73 {
74        cpu_die();
75 }
76 #endif
77 
78 /*
79  * Called by kexec, immediately prior to machine_kexec().
80  *
81  * This must completely disable all secondary CPUs; simply causing those CPUs
82  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
83  * kexec'd kernel to use any and all RAM as it sees fit, without having to
84  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
85  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
86  */
87 void machine_shutdown(void)
88 {
89 	smp_shutdown_nonboot_cpus(reboot_cpu);
90 }
91 
92 /*
93  * Halting simply requires that the secondary CPUs stop performing any
94  * activity (executing tasks, handling interrupts). smp_send_stop()
95  * achieves this.
96  */
97 void machine_halt(void)
98 {
99 	local_irq_disable();
100 	smp_send_stop();
101 	while (1);
102 }
103 
104 /*
105  * Power-off simply requires that the secondary CPUs stop performing any
106  * activity (executing tasks, handling interrupts). smp_send_stop()
107  * achieves this. When the system power is turned off, it will take all CPUs
108  * with it.
109  */
110 void machine_power_off(void)
111 {
112 	local_irq_disable();
113 	smp_send_stop();
114 	do_kernel_power_off();
115 }
116 
117 /*
118  * Restart requires that the secondary CPUs stop performing any activity
119  * while the primary CPU resets the system. Systems with multiple CPUs must
120  * provide a HW restart implementation, to ensure that all CPUs reset at once.
121  * This is required so that any code running after reset on the primary CPU
122  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123  * executing pre-reset code, and using RAM that the primary CPU's code wishes
124  * to use. Implementing such co-ordination would be essentially impossible.
125  */
126 void machine_restart(char *cmd)
127 {
128 	/* Disable interrupts first */
129 	local_irq_disable();
130 	smp_send_stop();
131 
132 	/*
133 	 * UpdateCapsule() depends on the system being reset via
134 	 * ResetSystem().
135 	 */
136 	if (efi_enabled(EFI_RUNTIME_SERVICES))
137 		efi_reboot(reboot_mode, NULL);
138 
139 	/* Now call the architecture specific reboot code. */
140 	do_kernel_restart(cmd);
141 
142 	/*
143 	 * Whoops - the architecture was unable to reboot.
144 	 */
145 	printk("Reboot failed -- System halted\n");
146 	while (1);
147 }
148 
149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150 static const char *const btypes[] = {
151 	bstr(NONE, "--"),
152 	bstr(  JC, "jc"),
153 	bstr(   C, "-c"),
154 	bstr(  J , "j-")
155 };
156 #undef bstr
157 
158 static void print_pstate(struct pt_regs *regs)
159 {
160 	u64 pstate = regs->pstate;
161 
162 	if (compat_user_mode(regs)) {
163 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164 			pstate,
165 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177 	} else {
178 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179 					       PSR_BTYPE_SHIFT];
180 
181 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182 			pstate,
183 			pstate & PSR_N_BIT ? 'N' : 'n',
184 			pstate & PSR_Z_BIT ? 'Z' : 'z',
185 			pstate & PSR_C_BIT ? 'C' : 'c',
186 			pstate & PSR_V_BIT ? 'V' : 'v',
187 			pstate & PSR_D_BIT ? 'D' : 'd',
188 			pstate & PSR_A_BIT ? 'A' : 'a',
189 			pstate & PSR_I_BIT ? 'I' : 'i',
190 			pstate & PSR_F_BIT ? 'F' : 'f',
191 			pstate & PSR_PAN_BIT ? '+' : '-',
192 			pstate & PSR_UAO_BIT ? '+' : '-',
193 			pstate & PSR_TCO_BIT ? '+' : '-',
194 			pstate & PSR_DIT_BIT ? '+' : '-',
195 			pstate & PSR_SSBS_BIT ? '+' : '-',
196 			btype_str);
197 	}
198 }
199 
200 void __show_regs(struct pt_regs *regs)
201 {
202 	int i, top_reg;
203 	u64 lr, sp;
204 
205 	if (compat_user_mode(regs)) {
206 		lr = regs->compat_lr;
207 		sp = regs->compat_sp;
208 		top_reg = 12;
209 	} else {
210 		lr = regs->regs[30];
211 		sp = regs->sp;
212 		top_reg = 29;
213 	}
214 
215 	show_regs_print_info(KERN_DEFAULT);
216 	print_pstate(regs);
217 
218 	if (!user_mode(regs)) {
219 		printk("pc : %pS\n", (void *)regs->pc);
220 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
221 	} else {
222 		printk("pc : %016llx\n", regs->pc);
223 		printk("lr : %016llx\n", lr);
224 	}
225 
226 	printk("sp : %016llx\n", sp);
227 
228 	if (system_uses_irq_prio_masking())
229 		printk("pmr_save: %08llx\n", regs->pmr_save);
230 
231 	i = top_reg;
232 
233 	while (i >= 0) {
234 		printk("x%-2d: %016llx", i, regs->regs[i]);
235 
236 		while (i-- % 3)
237 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
238 
239 		pr_cont("\n");
240 	}
241 }
242 
243 void show_regs(struct pt_regs *regs)
244 {
245 	__show_regs(regs);
246 	dump_backtrace(regs, NULL, KERN_DEFAULT);
247 }
248 
249 static void tls_thread_flush(void)
250 {
251 	write_sysreg(0, tpidr_el0);
252 	if (system_supports_tpidr2())
253 		write_sysreg_s(0, SYS_TPIDR2_EL0);
254 
255 	if (is_compat_task()) {
256 		current->thread.uw.tp_value = 0;
257 
258 		/*
259 		 * We need to ensure ordering between the shadow state and the
260 		 * hardware state, so that we don't corrupt the hardware state
261 		 * with a stale shadow state during context switch.
262 		 */
263 		barrier();
264 		write_sysreg(0, tpidrro_el0);
265 	}
266 }
267 
268 static void flush_tagged_addr_state(void)
269 {
270 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
271 		clear_thread_flag(TIF_TAGGED_ADDR);
272 }
273 
274 void flush_thread(void)
275 {
276 	fpsimd_flush_thread();
277 	tls_thread_flush();
278 	flush_ptrace_hw_breakpoint(current);
279 	flush_tagged_addr_state();
280 }
281 
282 void arch_release_task_struct(struct task_struct *tsk)
283 {
284 	fpsimd_release_task(tsk);
285 }
286 
287 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
288 {
289 	if (current->mm)
290 		fpsimd_preserve_current_state();
291 	*dst = *src;
292 
293 	/* We rely on the above assignment to initialize dst's thread_flags: */
294 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
295 
296 	/*
297 	 * Detach src's sve_state (if any) from dst so that it does not
298 	 * get erroneously used or freed prematurely.  dst's copies
299 	 * will be allocated on demand later on if dst uses SVE.
300 	 * For consistency, also clear TIF_SVE here: this could be done
301 	 * later in copy_process(), but to avoid tripping up future
302 	 * maintainers it is best not to leave TIF flags and buffers in
303 	 * an inconsistent state, even temporarily.
304 	 */
305 	dst->thread.sve_state = NULL;
306 	clear_tsk_thread_flag(dst, TIF_SVE);
307 
308 	/*
309 	 * In the unlikely event that we create a new thread with ZA
310 	 * enabled we should retain the ZA and ZT state so duplicate
311 	 * it here.  This may be shortly freed if we exec() or if
312 	 * CLONE_SETTLS but it's simpler to do it here. To avoid
313 	 * confusing the rest of the code ensure that we have a
314 	 * sve_state allocated whenever sme_state is allocated.
315 	 */
316 	if (thread_za_enabled(&src->thread)) {
317 		dst->thread.sve_state = kzalloc(sve_state_size(src),
318 						GFP_KERNEL);
319 		if (!dst->thread.sve_state)
320 			return -ENOMEM;
321 
322 		dst->thread.sme_state = kmemdup(src->thread.sme_state,
323 						sme_state_size(src),
324 						GFP_KERNEL);
325 		if (!dst->thread.sme_state) {
326 			kfree(dst->thread.sve_state);
327 			dst->thread.sve_state = NULL;
328 			return -ENOMEM;
329 		}
330 	} else {
331 		dst->thread.sme_state = NULL;
332 		clear_tsk_thread_flag(dst, TIF_SME);
333 	}
334 
335 	dst->thread.fp_type = FP_STATE_FPSIMD;
336 
337 	/* clear any pending asynchronous tag fault raised by the parent */
338 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
339 
340 	return 0;
341 }
342 
343 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
344 
345 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
346 {
347 	unsigned long clone_flags = args->flags;
348 	unsigned long stack_start = args->stack;
349 	unsigned long tls = args->tls;
350 	struct pt_regs *childregs = task_pt_regs(p);
351 
352 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
353 
354 	/*
355 	 * In case p was allocated the same task_struct pointer as some
356 	 * other recently-exited task, make sure p is disassociated from
357 	 * any cpu that may have run that now-exited task recently.
358 	 * Otherwise we could erroneously skip reloading the FPSIMD
359 	 * registers for p.
360 	 */
361 	fpsimd_flush_task_state(p);
362 
363 	ptrauth_thread_init_kernel(p);
364 
365 	if (likely(!args->fn)) {
366 		*childregs = *current_pt_regs();
367 		childregs->regs[0] = 0;
368 
369 		/*
370 		 * Read the current TLS pointer from tpidr_el0 as it may be
371 		 * out-of-sync with the saved value.
372 		 */
373 		*task_user_tls(p) = read_sysreg(tpidr_el0);
374 		if (system_supports_tpidr2())
375 			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
376 
377 		if (stack_start) {
378 			if (is_compat_thread(task_thread_info(p)))
379 				childregs->compat_sp = stack_start;
380 			else
381 				childregs->sp = stack_start;
382 		}
383 
384 		/*
385 		 * If a TLS pointer was passed to clone, use it for the new
386 		 * thread.  We also reset TPIDR2 if it's in use.
387 		 */
388 		if (clone_flags & CLONE_SETTLS) {
389 			p->thread.uw.tp_value = tls;
390 			p->thread.tpidr2_el0 = 0;
391 		}
392 	} else {
393 		/*
394 		 * A kthread has no context to ERET to, so ensure any buggy
395 		 * ERET is treated as an illegal exception return.
396 		 *
397 		 * When a user task is created from a kthread, childregs will
398 		 * be initialized by start_thread() or start_compat_thread().
399 		 */
400 		memset(childregs, 0, sizeof(struct pt_regs));
401 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
402 
403 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
404 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
405 	}
406 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
407 	p->thread.cpu_context.sp = (unsigned long)childregs;
408 	/*
409 	 * For the benefit of the unwinder, set up childregs->stackframe
410 	 * as the final frame for the new task.
411 	 */
412 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
413 
414 	ptrace_hw_copy_thread(p);
415 
416 	return 0;
417 }
418 
419 void tls_preserve_current_state(void)
420 {
421 	*task_user_tls(current) = read_sysreg(tpidr_el0);
422 	if (system_supports_tpidr2() && !is_compat_task())
423 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
424 }
425 
426 static void tls_thread_switch(struct task_struct *next)
427 {
428 	tls_preserve_current_state();
429 
430 	if (is_compat_thread(task_thread_info(next)))
431 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
432 	else if (!arm64_kernel_unmapped_at_el0())
433 		write_sysreg(0, tpidrro_el0);
434 
435 	write_sysreg(*task_user_tls(next), tpidr_el0);
436 	if (system_supports_tpidr2())
437 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
438 }
439 
440 /*
441  * Force SSBS state on context-switch, since it may be lost after migrating
442  * from a CPU which treats the bit as RES0 in a heterogeneous system.
443  */
444 static void ssbs_thread_switch(struct task_struct *next)
445 {
446 	/*
447 	 * Nothing to do for kernel threads, but 'regs' may be junk
448 	 * (e.g. idle task) so check the flags and bail early.
449 	 */
450 	if (unlikely(next->flags & PF_KTHREAD))
451 		return;
452 
453 	/*
454 	 * If all CPUs implement the SSBS extension, then we just need to
455 	 * context-switch the PSTATE field.
456 	 */
457 	if (cpus_have_const_cap(ARM64_SSBS))
458 		return;
459 
460 	spectre_v4_enable_task_mitigation(next);
461 }
462 
463 /*
464  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
465  * shadow copy so that we can restore this upon entry from userspace.
466  *
467  * This is *only* for exception entry from EL0, and is not valid until we
468  * __switch_to() a user task.
469  */
470 DEFINE_PER_CPU(struct task_struct *, __entry_task);
471 
472 static void entry_task_switch(struct task_struct *next)
473 {
474 	__this_cpu_write(__entry_task, next);
475 }
476 
477 /*
478  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
479  * Ensure access is disabled when switching to a 32bit task, ensure
480  * access is enabled when switching to a 64bit task.
481  */
482 static void erratum_1418040_thread_switch(struct task_struct *next)
483 {
484 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
485 	    !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
486 		return;
487 
488 	if (is_compat_thread(task_thread_info(next)))
489 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
490 	else
491 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
492 }
493 
494 static void erratum_1418040_new_exec(void)
495 {
496 	preempt_disable();
497 	erratum_1418040_thread_switch(current);
498 	preempt_enable();
499 }
500 
501 /*
502  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
503  * this function must be called with preemption disabled and the update to
504  * sctlr_user must be made in the same preemption disabled block so that
505  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
506  */
507 void update_sctlr_el1(u64 sctlr)
508 {
509 	/*
510 	 * EnIA must not be cleared while in the kernel as this is necessary for
511 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
512 	 */
513 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
514 
515 	/* ISB required for the kernel uaccess routines when setting TCF0. */
516 	isb();
517 }
518 
519 /*
520  * Thread switching.
521  */
522 __notrace_funcgraph __sched
523 struct task_struct *__switch_to(struct task_struct *prev,
524 				struct task_struct *next)
525 {
526 	struct task_struct *last;
527 
528 	fpsimd_thread_switch(next);
529 	tls_thread_switch(next);
530 	hw_breakpoint_thread_switch(next);
531 	contextidr_thread_switch(next);
532 	entry_task_switch(next);
533 	ssbs_thread_switch(next);
534 	erratum_1418040_thread_switch(next);
535 	ptrauth_thread_switch_user(next);
536 
537 	/*
538 	 * Complete any pending TLB or cache maintenance on this CPU in case
539 	 * the thread migrates to a different CPU.
540 	 * This full barrier is also required by the membarrier system
541 	 * call.
542 	 */
543 	dsb(ish);
544 
545 	/*
546 	 * MTE thread switching must happen after the DSB above to ensure that
547 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
548 	 * registers.
549 	 */
550 	mte_thread_switch(next);
551 	/* avoid expensive SCTLR_EL1 accesses if no change */
552 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
553 		update_sctlr_el1(next->thread.sctlr_user);
554 
555 	/* the actual thread switch */
556 	last = cpu_switch_to(prev, next);
557 
558 	return last;
559 }
560 
561 struct wchan_info {
562 	unsigned long	pc;
563 	int		count;
564 };
565 
566 static bool get_wchan_cb(void *arg, unsigned long pc)
567 {
568 	struct wchan_info *wchan_info = arg;
569 
570 	if (!in_sched_functions(pc)) {
571 		wchan_info->pc = pc;
572 		return false;
573 	}
574 	return wchan_info->count++ < 16;
575 }
576 
577 unsigned long __get_wchan(struct task_struct *p)
578 {
579 	struct wchan_info wchan_info = {
580 		.pc = 0,
581 		.count = 0,
582 	};
583 
584 	if (!try_get_task_stack(p))
585 		return 0;
586 
587 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
588 
589 	put_task_stack(p);
590 
591 	return wchan_info.pc;
592 }
593 
594 unsigned long arch_align_stack(unsigned long sp)
595 {
596 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
597 		sp -= get_random_u32_below(PAGE_SIZE);
598 	return sp & ~0xf;
599 }
600 
601 #ifdef CONFIG_COMPAT
602 int compat_elf_check_arch(const struct elf32_hdr *hdr)
603 {
604 	if (!system_supports_32bit_el0())
605 		return false;
606 
607 	if ((hdr)->e_machine != EM_ARM)
608 		return false;
609 
610 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
611 		return false;
612 
613 	/*
614 	 * Prevent execve() of a 32-bit program from a deadline task
615 	 * if the restricted affinity mask would be inadmissible on an
616 	 * asymmetric system.
617 	 */
618 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
619 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
620 }
621 #endif
622 
623 /*
624  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
625  */
626 void arch_setup_new_exec(void)
627 {
628 	unsigned long mmflags = 0;
629 
630 	if (is_compat_task()) {
631 		mmflags = MMCF_AARCH32;
632 
633 		/*
634 		 * Restrict the CPU affinity mask for a 32-bit task so that
635 		 * it contains only 32-bit-capable CPUs.
636 		 *
637 		 * From the perspective of the task, this looks similar to
638 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
639 		 * at the point of execve(), although we try a bit harder to
640 		 * honour the cpuset hierarchy.
641 		 */
642 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
643 			force_compatible_cpus_allowed_ptr(current);
644 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
645 		relax_compatible_cpus_allowed_ptr(current);
646 	}
647 
648 	current->mm->context.flags = mmflags;
649 	ptrauth_thread_init_user();
650 	mte_thread_init_user();
651 	erratum_1418040_new_exec();
652 
653 	if (task_spec_ssb_noexec(current)) {
654 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
655 					 PR_SPEC_ENABLE);
656 	}
657 }
658 
659 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
660 /*
661  * Control the relaxed ABI allowing tagged user addresses into the kernel.
662  */
663 static unsigned int tagged_addr_disabled;
664 
665 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
666 {
667 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
668 	struct thread_info *ti = task_thread_info(task);
669 
670 	if (is_compat_thread(ti))
671 		return -EINVAL;
672 
673 	if (system_supports_mte())
674 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
675 			| PR_MTE_TAG_MASK;
676 
677 	if (arg & ~valid_mask)
678 		return -EINVAL;
679 
680 	/*
681 	 * Do not allow the enabling of the tagged address ABI if globally
682 	 * disabled via sysctl abi.tagged_addr_disabled.
683 	 */
684 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
685 		return -EINVAL;
686 
687 	if (set_mte_ctrl(task, arg) != 0)
688 		return -EINVAL;
689 
690 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
691 
692 	return 0;
693 }
694 
695 long get_tagged_addr_ctrl(struct task_struct *task)
696 {
697 	long ret = 0;
698 	struct thread_info *ti = task_thread_info(task);
699 
700 	if (is_compat_thread(ti))
701 		return -EINVAL;
702 
703 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
704 		ret = PR_TAGGED_ADDR_ENABLE;
705 
706 	ret |= get_mte_ctrl(task);
707 
708 	return ret;
709 }
710 
711 /*
712  * Global sysctl to disable the tagged user addresses support. This control
713  * only prevents the tagged address ABI enabling via prctl() and does not
714  * disable it for tasks that already opted in to the relaxed ABI.
715  */
716 
717 static struct ctl_table tagged_addr_sysctl_table[] = {
718 	{
719 		.procname	= "tagged_addr_disabled",
720 		.mode		= 0644,
721 		.data		= &tagged_addr_disabled,
722 		.maxlen		= sizeof(int),
723 		.proc_handler	= proc_dointvec_minmax,
724 		.extra1		= SYSCTL_ZERO,
725 		.extra2		= SYSCTL_ONE,
726 	},
727 	{ }
728 };
729 
730 static int __init tagged_addr_init(void)
731 {
732 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
733 		return -EINVAL;
734 	return 0;
735 }
736 
737 core_initcall(tagged_addr_init);
738 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
739 
740 #ifdef CONFIG_BINFMT_ELF
741 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
742 			 bool has_interp, bool is_interp)
743 {
744 	/*
745 	 * For dynamically linked executables the interpreter is
746 	 * responsible for setting PROT_BTI on everything except
747 	 * itself.
748 	 */
749 	if (is_interp != has_interp)
750 		return prot;
751 
752 	if (!(state->flags & ARM64_ELF_BTI))
753 		return prot;
754 
755 	if (prot & PROT_EXEC)
756 		prot |= PROT_BTI;
757 
758 	return prot;
759 }
760 #endif
761