xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/mman.h>
22 #include <linux/mm.h>
23 #include <linux/nospec.h>
24 #include <linux/stddef.h>
25 #include <linux/sysctl.h>
26 #include <linux/unistd.h>
27 #include <linux/user.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/cpu.h>
33 #include <linux/elfcore.h>
34 #include <linux/pm.h>
35 #include <linux/tick.h>
36 #include <linux/utsname.h>
37 #include <linux/uaccess.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/personality.h>
41 #include <linux/notifier.h>
42 #include <trace/events/power.h>
43 #include <linux/percpu.h>
44 #include <linux/thread_info.h>
45 #include <linux/prctl.h>
46 
47 #include <asm/alternative.h>
48 #include <asm/compat.h>
49 #include <asm/cpufeature.h>
50 #include <asm/cacheflush.h>
51 #include <asm/exec.h>
52 #include <asm/fpsimd.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 #ifdef CONFIG_HOTPLUG_CPU
74 void arch_cpu_idle_dead(void)
75 {
76        cpu_die();
77 }
78 #endif
79 
80 /*
81  * Called by kexec, immediately prior to machine_kexec().
82  *
83  * This must completely disable all secondary CPUs; simply causing those CPUs
84  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85  * kexec'd kernel to use any and all RAM as it sees fit, without having to
86  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88  */
89 void machine_shutdown(void)
90 {
91 	smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93 
94 /*
95  * Halting simply requires that the secondary CPUs stop performing any
96  * activity (executing tasks, handling interrupts). smp_send_stop()
97  * achieves this.
98  */
99 void machine_halt(void)
100 {
101 	local_irq_disable();
102 	smp_send_stop();
103 	while (1);
104 }
105 
106 /*
107  * Power-off simply requires that the secondary CPUs stop performing any
108  * activity (executing tasks, handling interrupts). smp_send_stop()
109  * achieves this. When the system power is turned off, it will take all CPUs
110  * with it.
111  */
112 void machine_power_off(void)
113 {
114 	local_irq_disable();
115 	smp_send_stop();
116 	if (pm_power_off)
117 		pm_power_off();
118 }
119 
120 /*
121  * Restart requires that the secondary CPUs stop performing any activity
122  * while the primary CPU resets the system. Systems with multiple CPUs must
123  * provide a HW restart implementation, to ensure that all CPUs reset at once.
124  * This is required so that any code running after reset on the primary CPU
125  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126  * executing pre-reset code, and using RAM that the primary CPU's code wishes
127  * to use. Implementing such co-ordination would be essentially impossible.
128  */
129 void machine_restart(char *cmd)
130 {
131 	/* Disable interrupts first */
132 	local_irq_disable();
133 	smp_send_stop();
134 
135 	/*
136 	 * UpdateCapsule() depends on the system being reset via
137 	 * ResetSystem().
138 	 */
139 	if (efi_enabled(EFI_RUNTIME_SERVICES))
140 		efi_reboot(reboot_mode, NULL);
141 
142 	/* Now call the architecture specific reboot code. */
143 	do_kernel_restart(cmd);
144 
145 	/*
146 	 * Whoops - the architecture was unable to reboot.
147 	 */
148 	printk("Reboot failed -- System halted\n");
149 	while (1);
150 }
151 
152 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153 static const char *const btypes[] = {
154 	bstr(NONE, "--"),
155 	bstr(  JC, "jc"),
156 	bstr(   C, "-c"),
157 	bstr(  J , "j-")
158 };
159 #undef bstr
160 
161 static void print_pstate(struct pt_regs *regs)
162 {
163 	u64 pstate = regs->pstate;
164 
165 	if (compat_user_mode(regs)) {
166 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
167 			pstate,
168 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
178 	} else {
179 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 					       PSR_BTYPE_SHIFT];
181 
182 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
183 			pstate,
184 			pstate & PSR_N_BIT ? 'N' : 'n',
185 			pstate & PSR_Z_BIT ? 'Z' : 'z',
186 			pstate & PSR_C_BIT ? 'C' : 'c',
187 			pstate & PSR_V_BIT ? 'V' : 'v',
188 			pstate & PSR_D_BIT ? 'D' : 'd',
189 			pstate & PSR_A_BIT ? 'A' : 'a',
190 			pstate & PSR_I_BIT ? 'I' : 'i',
191 			pstate & PSR_F_BIT ? 'F' : 'f',
192 			pstate & PSR_PAN_BIT ? '+' : '-',
193 			pstate & PSR_UAO_BIT ? '+' : '-',
194 			pstate & PSR_TCO_BIT ? '+' : '-',
195 			btype_str);
196 	}
197 }
198 
199 void __show_regs(struct pt_regs *regs)
200 {
201 	int i, top_reg;
202 	u64 lr, sp;
203 
204 	if (compat_user_mode(regs)) {
205 		lr = regs->compat_lr;
206 		sp = regs->compat_sp;
207 		top_reg = 12;
208 	} else {
209 		lr = regs->regs[30];
210 		sp = regs->sp;
211 		top_reg = 29;
212 	}
213 
214 	show_regs_print_info(KERN_DEFAULT);
215 	print_pstate(regs);
216 
217 	if (!user_mode(regs)) {
218 		printk("pc : %pS\n", (void *)regs->pc);
219 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
220 	} else {
221 		printk("pc : %016llx\n", regs->pc);
222 		printk("lr : %016llx\n", lr);
223 	}
224 
225 	printk("sp : %016llx\n", sp);
226 
227 	if (system_uses_irq_prio_masking())
228 		printk("pmr_save: %08llx\n", regs->pmr_save);
229 
230 	i = top_reg;
231 
232 	while (i >= 0) {
233 		printk("x%-2d: %016llx", i, regs->regs[i]);
234 
235 		while (i-- % 3)
236 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
237 
238 		pr_cont("\n");
239 	}
240 }
241 
242 void show_regs(struct pt_regs *regs)
243 {
244 	__show_regs(regs);
245 	dump_backtrace(regs, NULL, KERN_DEFAULT);
246 }
247 
248 static void tls_thread_flush(void)
249 {
250 	write_sysreg(0, tpidr_el0);
251 
252 	if (is_compat_task()) {
253 		current->thread.uw.tp_value = 0;
254 
255 		/*
256 		 * We need to ensure ordering between the shadow state and the
257 		 * hardware state, so that we don't corrupt the hardware state
258 		 * with a stale shadow state during context switch.
259 		 */
260 		barrier();
261 		write_sysreg(0, tpidrro_el0);
262 	}
263 }
264 
265 static void flush_tagged_addr_state(void)
266 {
267 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
268 		clear_thread_flag(TIF_TAGGED_ADDR);
269 }
270 
271 void flush_thread(void)
272 {
273 	fpsimd_flush_thread();
274 	tls_thread_flush();
275 	flush_ptrace_hw_breakpoint(current);
276 	flush_tagged_addr_state();
277 }
278 
279 void release_thread(struct task_struct *dead_task)
280 {
281 }
282 
283 void arch_release_task_struct(struct task_struct *tsk)
284 {
285 	fpsimd_release_task(tsk);
286 }
287 
288 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
289 {
290 	if (current->mm)
291 		fpsimd_preserve_current_state();
292 	*dst = *src;
293 
294 	/* We rely on the above assignment to initialize dst's thread_flags: */
295 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
296 
297 	/*
298 	 * Detach src's sve_state (if any) from dst so that it does not
299 	 * get erroneously used or freed prematurely.  dst's sve_state
300 	 * will be allocated on demand later on if dst uses SVE.
301 	 * For consistency, also clear TIF_SVE here: this could be done
302 	 * later in copy_process(), but to avoid tripping up future
303 	 * maintainers it is best not to leave TIF_SVE and sve_state in
304 	 * an inconsistent state, even temporarily.
305 	 */
306 	dst->thread.sve_state = NULL;
307 	clear_tsk_thread_flag(dst, TIF_SVE);
308 
309 	/* clear any pending asynchronous tag fault raised by the parent */
310 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
311 
312 	return 0;
313 }
314 
315 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
316 
317 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
318 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
319 {
320 	struct pt_regs *childregs = task_pt_regs(p);
321 
322 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
323 
324 	/*
325 	 * In case p was allocated the same task_struct pointer as some
326 	 * other recently-exited task, make sure p is disassociated from
327 	 * any cpu that may have run that now-exited task recently.
328 	 * Otherwise we could erroneously skip reloading the FPSIMD
329 	 * registers for p.
330 	 */
331 	fpsimd_flush_task_state(p);
332 
333 	ptrauth_thread_init_kernel(p);
334 
335 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
336 		*childregs = *current_pt_regs();
337 		childregs->regs[0] = 0;
338 
339 		/*
340 		 * Read the current TLS pointer from tpidr_el0 as it may be
341 		 * out-of-sync with the saved value.
342 		 */
343 		*task_user_tls(p) = read_sysreg(tpidr_el0);
344 
345 		if (stack_start) {
346 			if (is_compat_thread(task_thread_info(p)))
347 				childregs->compat_sp = stack_start;
348 			else
349 				childregs->sp = stack_start;
350 		}
351 
352 		/*
353 		 * If a TLS pointer was passed to clone, use it for the new
354 		 * thread.
355 		 */
356 		if (clone_flags & CLONE_SETTLS)
357 			p->thread.uw.tp_value = tls;
358 	} else {
359 		/*
360 		 * A kthread has no context to ERET to, so ensure any buggy
361 		 * ERET is treated as an illegal exception return.
362 		 *
363 		 * When a user task is created from a kthread, childregs will
364 		 * be initialized by start_thread() or start_compat_thread().
365 		 */
366 		memset(childregs, 0, sizeof(struct pt_regs));
367 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
368 
369 		p->thread.cpu_context.x19 = stack_start;
370 		p->thread.cpu_context.x20 = stk_sz;
371 	}
372 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
373 	p->thread.cpu_context.sp = (unsigned long)childregs;
374 	/*
375 	 * For the benefit of the unwinder, set up childregs->stackframe
376 	 * as the final frame for the new task.
377 	 */
378 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
379 
380 	ptrace_hw_copy_thread(p);
381 
382 	return 0;
383 }
384 
385 void tls_preserve_current_state(void)
386 {
387 	*task_user_tls(current) = read_sysreg(tpidr_el0);
388 }
389 
390 static void tls_thread_switch(struct task_struct *next)
391 {
392 	tls_preserve_current_state();
393 
394 	if (is_compat_thread(task_thread_info(next)))
395 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
396 	else if (!arm64_kernel_unmapped_at_el0())
397 		write_sysreg(0, tpidrro_el0);
398 
399 	write_sysreg(*task_user_tls(next), tpidr_el0);
400 }
401 
402 /*
403  * Force SSBS state on context-switch, since it may be lost after migrating
404  * from a CPU which treats the bit as RES0 in a heterogeneous system.
405  */
406 static void ssbs_thread_switch(struct task_struct *next)
407 {
408 	/*
409 	 * Nothing to do for kernel threads, but 'regs' may be junk
410 	 * (e.g. idle task) so check the flags and bail early.
411 	 */
412 	if (unlikely(next->flags & PF_KTHREAD))
413 		return;
414 
415 	/*
416 	 * If all CPUs implement the SSBS extension, then we just need to
417 	 * context-switch the PSTATE field.
418 	 */
419 	if (cpus_have_const_cap(ARM64_SSBS))
420 		return;
421 
422 	spectre_v4_enable_task_mitigation(next);
423 }
424 
425 /*
426  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
427  * shadow copy so that we can restore this upon entry from userspace.
428  *
429  * This is *only* for exception entry from EL0, and is not valid until we
430  * __switch_to() a user task.
431  */
432 DEFINE_PER_CPU(struct task_struct *, __entry_task);
433 
434 static void entry_task_switch(struct task_struct *next)
435 {
436 	__this_cpu_write(__entry_task, next);
437 }
438 
439 /*
440  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
441  * Assuming the virtual counter is enabled at the beginning of times:
442  *
443  * - disable access when switching from a 64bit task to a 32bit task
444  * - enable access when switching from a 32bit task to a 64bit task
445  */
446 static void erratum_1418040_thread_switch(struct task_struct *prev,
447 					  struct task_struct *next)
448 {
449 	bool prev32, next32;
450 	u64 val;
451 
452 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
453 		return;
454 
455 	prev32 = is_compat_thread(task_thread_info(prev));
456 	next32 = is_compat_thread(task_thread_info(next));
457 
458 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
459 		return;
460 
461 	val = read_sysreg(cntkctl_el1);
462 
463 	if (!next32)
464 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
465 	else
466 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
467 
468 	write_sysreg(val, cntkctl_el1);
469 }
470 
471 static void compat_thread_switch(struct task_struct *next)
472 {
473 	if (!is_compat_thread(task_thread_info(next)))
474 		return;
475 
476 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
477 		set_tsk_thread_flag(next, TIF_NOTIFY_RESUME);
478 }
479 
480 static void update_sctlr_el1(u64 sctlr)
481 {
482 	/*
483 	 * EnIA must not be cleared while in the kernel as this is necessary for
484 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
485 	 */
486 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
487 
488 	/* ISB required for the kernel uaccess routines when setting TCF0. */
489 	isb();
490 }
491 
492 void set_task_sctlr_el1(u64 sctlr)
493 {
494 	/*
495 	 * __switch_to() checks current->thread.sctlr as an
496 	 * optimisation. Disable preemption so that it does not see
497 	 * the variable update before the SCTLR_EL1 one.
498 	 */
499 	preempt_disable();
500 	current->thread.sctlr_user = sctlr;
501 	update_sctlr_el1(sctlr);
502 	preempt_enable();
503 }
504 
505 /*
506  * Thread switching.
507  */
508 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
509 				struct task_struct *next)
510 {
511 	struct task_struct *last;
512 
513 	fpsimd_thread_switch(next);
514 	tls_thread_switch(next);
515 	hw_breakpoint_thread_switch(next);
516 	contextidr_thread_switch(next);
517 	entry_task_switch(next);
518 	ssbs_thread_switch(next);
519 	erratum_1418040_thread_switch(prev, next);
520 	ptrauth_thread_switch_user(next);
521 	compat_thread_switch(next);
522 
523 	/*
524 	 * Complete any pending TLB or cache maintenance on this CPU in case
525 	 * the thread migrates to a different CPU.
526 	 * This full barrier is also required by the membarrier system
527 	 * call.
528 	 */
529 	dsb(ish);
530 
531 	/*
532 	 * MTE thread switching must happen after the DSB above to ensure that
533 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
534 	 * registers.
535 	 */
536 	mte_thread_switch(next);
537 	/* avoid expensive SCTLR_EL1 accesses if no change */
538 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
539 		update_sctlr_el1(next->thread.sctlr_user);
540 
541 	/* the actual thread switch */
542 	last = cpu_switch_to(prev, next);
543 
544 	return last;
545 }
546 
547 unsigned long get_wchan(struct task_struct *p)
548 {
549 	struct stackframe frame;
550 	unsigned long stack_page, ret = 0;
551 	int count = 0;
552 	if (!p || p == current || task_is_running(p))
553 		return 0;
554 
555 	stack_page = (unsigned long)try_get_task_stack(p);
556 	if (!stack_page)
557 		return 0;
558 
559 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
560 
561 	do {
562 		if (unwind_frame(p, &frame))
563 			goto out;
564 		if (!in_sched_functions(frame.pc)) {
565 			ret = frame.pc;
566 			goto out;
567 		}
568 	} while (count++ < 16);
569 
570 out:
571 	put_task_stack(p);
572 	return ret;
573 }
574 
575 unsigned long arch_align_stack(unsigned long sp)
576 {
577 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
578 		sp -= get_random_int() & ~PAGE_MASK;
579 	return sp & ~0xf;
580 }
581 
582 /*
583  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
584  */
585 void arch_setup_new_exec(void)
586 {
587 	unsigned long mmflags = 0;
588 
589 	if (is_compat_task()) {
590 		mmflags = MMCF_AARCH32;
591 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
592 			set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
593 	}
594 
595 	current->mm->context.flags = mmflags;
596 	ptrauth_thread_init_user();
597 	mte_thread_init_user();
598 
599 	if (task_spec_ssb_noexec(current)) {
600 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
601 					 PR_SPEC_ENABLE);
602 	}
603 }
604 
605 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
606 /*
607  * Control the relaxed ABI allowing tagged user addresses into the kernel.
608  */
609 static unsigned int tagged_addr_disabled;
610 
611 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
612 {
613 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
614 	struct thread_info *ti = task_thread_info(task);
615 
616 	if (is_compat_thread(ti))
617 		return -EINVAL;
618 
619 	if (system_supports_mte())
620 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
621 
622 	if (arg & ~valid_mask)
623 		return -EINVAL;
624 
625 	/*
626 	 * Do not allow the enabling of the tagged address ABI if globally
627 	 * disabled via sysctl abi.tagged_addr_disabled.
628 	 */
629 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
630 		return -EINVAL;
631 
632 	if (set_mte_ctrl(task, arg) != 0)
633 		return -EINVAL;
634 
635 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
636 
637 	return 0;
638 }
639 
640 long get_tagged_addr_ctrl(struct task_struct *task)
641 {
642 	long ret = 0;
643 	struct thread_info *ti = task_thread_info(task);
644 
645 	if (is_compat_thread(ti))
646 		return -EINVAL;
647 
648 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
649 		ret = PR_TAGGED_ADDR_ENABLE;
650 
651 	ret |= get_mte_ctrl(task);
652 
653 	return ret;
654 }
655 
656 /*
657  * Global sysctl to disable the tagged user addresses support. This control
658  * only prevents the tagged address ABI enabling via prctl() and does not
659  * disable it for tasks that already opted in to the relaxed ABI.
660  */
661 
662 static struct ctl_table tagged_addr_sysctl_table[] = {
663 	{
664 		.procname	= "tagged_addr_disabled",
665 		.mode		= 0644,
666 		.data		= &tagged_addr_disabled,
667 		.maxlen		= sizeof(int),
668 		.proc_handler	= proc_dointvec_minmax,
669 		.extra1		= SYSCTL_ZERO,
670 		.extra2		= SYSCTL_ONE,
671 	},
672 	{ }
673 };
674 
675 static int __init tagged_addr_init(void)
676 {
677 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
678 		return -EINVAL;
679 	return 0;
680 }
681 
682 core_initcall(tagged_addr_init);
683 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
684 
685 #ifdef CONFIG_BINFMT_ELF
686 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
687 			 bool has_interp, bool is_interp)
688 {
689 	/*
690 	 * For dynamically linked executables the interpreter is
691 	 * responsible for setting PROT_BTI on everything except
692 	 * itself.
693 	 */
694 	if (is_interp != has_interp)
695 		return prot;
696 
697 	if (!(state->flags & ARM64_ELF_BTI))
698 		return prot;
699 
700 	if (prot & PROT_EXEC)
701 		prot |= PROT_BTI;
702 
703 	return prot;
704 }
705 #endif
706