xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/init.h>
39 #include <linux/cpu.h>
40 #include <linux/elfcore.h>
41 #include <linux/pm.h>
42 #include <linux/tick.h>
43 #include <linux/utsname.h>
44 #include <linux/uaccess.h>
45 #include <linux/random.h>
46 #include <linux/hw_breakpoint.h>
47 #include <linux/personality.h>
48 #include <linux/notifier.h>
49 #include <trace/events/power.h>
50 #include <linux/percpu.h>
51 #include <linux/thread_info.h>
52 
53 #include <asm/alternative.h>
54 #include <asm/compat.h>
55 #include <asm/cacheflush.h>
56 #include <asm/exec.h>
57 #include <asm/fpsimd.h>
58 #include <asm/mmu_context.h>
59 #include <asm/processor.h>
60 #include <asm/stacktrace.h>
61 
62 #ifdef CONFIG_STACKPROTECTOR
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __read_mostly;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67 
68 /*
69  * Function pointers to optional machine specific functions
70  */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73 
74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
75 
76 /*
77  * This is our default idle handler.
78  */
79 void arch_cpu_idle(void)
80 {
81 	/*
82 	 * This should do all the clock switching and wait for interrupt
83 	 * tricks
84 	 */
85 	trace_cpu_idle_rcuidle(1, smp_processor_id());
86 	cpu_do_idle();
87 	local_irq_enable();
88 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
89 }
90 
91 #ifdef CONFIG_HOTPLUG_CPU
92 void arch_cpu_idle_dead(void)
93 {
94        cpu_die();
95 }
96 #endif
97 
98 /*
99  * Called by kexec, immediately prior to machine_kexec().
100  *
101  * This must completely disable all secondary CPUs; simply causing those CPUs
102  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103  * kexec'd kernel to use any and all RAM as it sees fit, without having to
104  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105  * functionality embodied in disable_nonboot_cpus() to achieve this.
106  */
107 void machine_shutdown(void)
108 {
109 	disable_nonboot_cpus();
110 }
111 
112 /*
113  * Halting simply requires that the secondary CPUs stop performing any
114  * activity (executing tasks, handling interrupts). smp_send_stop()
115  * achieves this.
116  */
117 void machine_halt(void)
118 {
119 	local_irq_disable();
120 	smp_send_stop();
121 	while (1);
122 }
123 
124 /*
125  * Power-off simply requires that the secondary CPUs stop performing any
126  * activity (executing tasks, handling interrupts). smp_send_stop()
127  * achieves this. When the system power is turned off, it will take all CPUs
128  * with it.
129  */
130 void machine_power_off(void)
131 {
132 	local_irq_disable();
133 	smp_send_stop();
134 	if (pm_power_off)
135 		pm_power_off();
136 }
137 
138 /*
139  * Restart requires that the secondary CPUs stop performing any activity
140  * while the primary CPU resets the system. Systems with multiple CPUs must
141  * provide a HW restart implementation, to ensure that all CPUs reset at once.
142  * This is required so that any code running after reset on the primary CPU
143  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144  * executing pre-reset code, and using RAM that the primary CPU's code wishes
145  * to use. Implementing such co-ordination would be essentially impossible.
146  */
147 void machine_restart(char *cmd)
148 {
149 	/* Disable interrupts first */
150 	local_irq_disable();
151 	smp_send_stop();
152 
153 	/*
154 	 * UpdateCapsule() depends on the system being reset via
155 	 * ResetSystem().
156 	 */
157 	if (efi_enabled(EFI_RUNTIME_SERVICES))
158 		efi_reboot(reboot_mode, NULL);
159 
160 	/* Now call the architecture specific reboot code. */
161 	if (arm_pm_restart)
162 		arm_pm_restart(reboot_mode, cmd);
163 	else
164 		do_kernel_restart(cmd);
165 
166 	/*
167 	 * Whoops - the architecture was unable to reboot.
168 	 */
169 	printk("Reboot failed -- System halted\n");
170 	while (1);
171 }
172 
173 static void print_pstate(struct pt_regs *regs)
174 {
175 	u64 pstate = regs->pstate;
176 
177 	if (compat_user_mode(regs)) {
178 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
179 			pstate,
180 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
181 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
182 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
183 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
184 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
185 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
186 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
187 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
188 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
189 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
190 	} else {
191 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
192 			pstate,
193 			pstate & PSR_N_BIT ? 'N' : 'n',
194 			pstate & PSR_Z_BIT ? 'Z' : 'z',
195 			pstate & PSR_C_BIT ? 'C' : 'c',
196 			pstate & PSR_V_BIT ? 'V' : 'v',
197 			pstate & PSR_D_BIT ? 'D' : 'd',
198 			pstate & PSR_A_BIT ? 'A' : 'a',
199 			pstate & PSR_I_BIT ? 'I' : 'i',
200 			pstate & PSR_F_BIT ? 'F' : 'f',
201 			pstate & PSR_PAN_BIT ? '+' : '-',
202 			pstate & PSR_UAO_BIT ? '+' : '-');
203 	}
204 }
205 
206 void __show_regs(struct pt_regs *regs)
207 {
208 	int i, top_reg;
209 	u64 lr, sp;
210 
211 	if (compat_user_mode(regs)) {
212 		lr = regs->compat_lr;
213 		sp = regs->compat_sp;
214 		top_reg = 12;
215 	} else {
216 		lr = regs->regs[30];
217 		sp = regs->sp;
218 		top_reg = 29;
219 	}
220 
221 	show_regs_print_info(KERN_DEFAULT);
222 	print_pstate(regs);
223 
224 	if (!user_mode(regs)) {
225 		printk("pc : %pS\n", (void *)regs->pc);
226 		printk("lr : %pS\n", (void *)lr);
227 	} else {
228 		printk("pc : %016llx\n", regs->pc);
229 		printk("lr : %016llx\n", lr);
230 	}
231 
232 	printk("sp : %016llx\n", sp);
233 
234 	i = top_reg;
235 
236 	while (i >= 0) {
237 		printk("x%-2d: %016llx ", i, regs->regs[i]);
238 		i--;
239 
240 		if (i % 2 == 0) {
241 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
242 			i--;
243 		}
244 
245 		pr_cont("\n");
246 	}
247 }
248 
249 void show_regs(struct pt_regs * regs)
250 {
251 	__show_regs(regs);
252 	dump_backtrace(regs, NULL);
253 }
254 
255 static void tls_thread_flush(void)
256 {
257 	write_sysreg(0, tpidr_el0);
258 
259 	if (is_compat_task()) {
260 		current->thread.uw.tp_value = 0;
261 
262 		/*
263 		 * We need to ensure ordering between the shadow state and the
264 		 * hardware state, so that we don't corrupt the hardware state
265 		 * with a stale shadow state during context switch.
266 		 */
267 		barrier();
268 		write_sysreg(0, tpidrro_el0);
269 	}
270 }
271 
272 void flush_thread(void)
273 {
274 	fpsimd_flush_thread();
275 	tls_thread_flush();
276 	flush_ptrace_hw_breakpoint(current);
277 }
278 
279 void release_thread(struct task_struct *dead_task)
280 {
281 }
282 
283 void arch_release_task_struct(struct task_struct *tsk)
284 {
285 	fpsimd_release_task(tsk);
286 }
287 
288 /*
289  * src and dst may temporarily have aliased sve_state after task_struct
290  * is copied.  We cannot fix this properly here, because src may have
291  * live SVE state and dst's thread_info may not exist yet, so tweaking
292  * either src's or dst's TIF_SVE is not safe.
293  *
294  * The unaliasing is done in copy_thread() instead.  This works because
295  * dst is not schedulable or traceable until both of these functions
296  * have been called.
297  */
298 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
299 {
300 	if (current->mm)
301 		fpsimd_preserve_current_state();
302 	*dst = *src;
303 
304 	return 0;
305 }
306 
307 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
308 
309 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
310 		unsigned long stk_sz, struct task_struct *p)
311 {
312 	struct pt_regs *childregs = task_pt_regs(p);
313 
314 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
315 
316 	/*
317 	 * Unalias p->thread.sve_state (if any) from the parent task
318 	 * and disable discard SVE state for p:
319 	 */
320 	clear_tsk_thread_flag(p, TIF_SVE);
321 	p->thread.sve_state = NULL;
322 
323 	/*
324 	 * In case p was allocated the same task_struct pointer as some
325 	 * other recently-exited task, make sure p is disassociated from
326 	 * any cpu that may have run that now-exited task recently.
327 	 * Otherwise we could erroneously skip reloading the FPSIMD
328 	 * registers for p.
329 	 */
330 	fpsimd_flush_task_state(p);
331 
332 	if (likely(!(p->flags & PF_KTHREAD))) {
333 		*childregs = *current_pt_regs();
334 		childregs->regs[0] = 0;
335 
336 		/*
337 		 * Read the current TLS pointer from tpidr_el0 as it may be
338 		 * out-of-sync with the saved value.
339 		 */
340 		*task_user_tls(p) = read_sysreg(tpidr_el0);
341 
342 		if (stack_start) {
343 			if (is_compat_thread(task_thread_info(p)))
344 				childregs->compat_sp = stack_start;
345 			else
346 				childregs->sp = stack_start;
347 		}
348 
349 		/*
350 		 * If a TLS pointer was passed to clone (4th argument), use it
351 		 * for the new thread.
352 		 */
353 		if (clone_flags & CLONE_SETTLS)
354 			p->thread.uw.tp_value = childregs->regs[3];
355 	} else {
356 		memset(childregs, 0, sizeof(struct pt_regs));
357 		childregs->pstate = PSR_MODE_EL1h;
358 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
359 		    cpus_have_const_cap(ARM64_HAS_UAO))
360 			childregs->pstate |= PSR_UAO_BIT;
361 
362 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
363 			childregs->pstate |= PSR_SSBS_BIT;
364 
365 		p->thread.cpu_context.x19 = stack_start;
366 		p->thread.cpu_context.x20 = stk_sz;
367 	}
368 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
369 	p->thread.cpu_context.sp = (unsigned long)childregs;
370 
371 	ptrace_hw_copy_thread(p);
372 
373 	return 0;
374 }
375 
376 void tls_preserve_current_state(void)
377 {
378 	*task_user_tls(current) = read_sysreg(tpidr_el0);
379 }
380 
381 static void tls_thread_switch(struct task_struct *next)
382 {
383 	tls_preserve_current_state();
384 
385 	if (is_compat_thread(task_thread_info(next)))
386 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
387 	else if (!arm64_kernel_unmapped_at_el0())
388 		write_sysreg(0, tpidrro_el0);
389 
390 	write_sysreg(*task_user_tls(next), tpidr_el0);
391 }
392 
393 /* Restore the UAO state depending on next's addr_limit */
394 void uao_thread_switch(struct task_struct *next)
395 {
396 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
397 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
398 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
399 		else
400 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
401 	}
402 }
403 
404 /*
405  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
406  * shadow copy so that we can restore this upon entry from userspace.
407  *
408  * This is *only* for exception entry from EL0, and is not valid until we
409  * __switch_to() a user task.
410  */
411 DEFINE_PER_CPU(struct task_struct *, __entry_task);
412 
413 static void entry_task_switch(struct task_struct *next)
414 {
415 	__this_cpu_write(__entry_task, next);
416 }
417 
418 /*
419  * Thread switching.
420  */
421 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
422 				struct task_struct *next)
423 {
424 	struct task_struct *last;
425 
426 	fpsimd_thread_switch(next);
427 	tls_thread_switch(next);
428 	hw_breakpoint_thread_switch(next);
429 	contextidr_thread_switch(next);
430 	entry_task_switch(next);
431 	uao_thread_switch(next);
432 
433 	/*
434 	 * Complete any pending TLB or cache maintenance on this CPU in case
435 	 * the thread migrates to a different CPU.
436 	 * This full barrier is also required by the membarrier system
437 	 * call.
438 	 */
439 	dsb(ish);
440 
441 	/* the actual thread switch */
442 	last = cpu_switch_to(prev, next);
443 
444 	return last;
445 }
446 
447 unsigned long get_wchan(struct task_struct *p)
448 {
449 	struct stackframe frame;
450 	unsigned long stack_page, ret = 0;
451 	int count = 0;
452 	if (!p || p == current || p->state == TASK_RUNNING)
453 		return 0;
454 
455 	stack_page = (unsigned long)try_get_task_stack(p);
456 	if (!stack_page)
457 		return 0;
458 
459 	frame.fp = thread_saved_fp(p);
460 	frame.pc = thread_saved_pc(p);
461 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
462 	frame.graph = p->curr_ret_stack;
463 #endif
464 	do {
465 		if (unwind_frame(p, &frame))
466 			goto out;
467 		if (!in_sched_functions(frame.pc)) {
468 			ret = frame.pc;
469 			goto out;
470 		}
471 	} while (count ++ < 16);
472 
473 out:
474 	put_task_stack(p);
475 	return ret;
476 }
477 
478 unsigned long arch_align_stack(unsigned long sp)
479 {
480 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
481 		sp -= get_random_int() & ~PAGE_MASK;
482 	return sp & ~0xf;
483 }
484 
485 unsigned long arch_randomize_brk(struct mm_struct *mm)
486 {
487 	if (is_compat_task())
488 		return randomize_page(mm->brk, SZ_32M);
489 	else
490 		return randomize_page(mm->brk, SZ_1G);
491 }
492 
493 /*
494  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
495  */
496 void arch_setup_new_exec(void)
497 {
498 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
499 }
500