xref: /openbmc/linux/arch/arm64/kernel/probes/kprobes.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/kernel/probes/kprobes.c
4  *
5  * Kprobes support for ARM64
6  *
7  * Copyright (C) 2013 Linaro Limited.
8  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9  */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/daifflags.h>
25 #include <asm/system_misc.h>
26 #include <asm/insn.h>
27 #include <linux/uaccess.h>
28 #include <asm/irq.h>
29 #include <asm/sections.h>
30 
31 #include "decode-insn.h"
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 static void __kprobes
37 post_kprobe_handler(struct kprobe *, struct kprobe_ctlblk *, struct pt_regs *);
38 
39 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
40 {
41 	kprobe_opcode_t *addr = p->ainsn.api.insn;
42 	void *addrs[] = {addr, addr + 1};
43 	u32 insns[] = {p->opcode, BRK64_OPCODE_KPROBES_SS};
44 
45 	/* prepare insn slot */
46 	aarch64_insn_patch_text(addrs, insns, 2);
47 
48 	flush_icache_range((uintptr_t)addr, (uintptr_t)(addr + MAX_INSN_SIZE));
49 
50 	/*
51 	 * Needs restoring of return address after stepping xol.
52 	 */
53 	p->ainsn.api.restore = (unsigned long) p->addr +
54 	  sizeof(kprobe_opcode_t);
55 }
56 
57 static void __kprobes arch_prepare_simulate(struct kprobe *p)
58 {
59 	/* This instructions is not executed xol. No need to adjust the PC */
60 	p->ainsn.api.restore = 0;
61 }
62 
63 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
64 {
65 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
66 
67 	if (p->ainsn.api.handler)
68 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
69 
70 	/* single step simulated, now go for post processing */
71 	post_kprobe_handler(p, kcb, regs);
72 }
73 
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
75 {
76 	unsigned long probe_addr = (unsigned long)p->addr;
77 
78 	if (probe_addr & 0x3)
79 		return -EINVAL;
80 
81 	/* copy instruction */
82 	p->opcode = le32_to_cpu(*p->addr);
83 
84 	if (search_exception_tables(probe_addr))
85 		return -EINVAL;
86 
87 	/* decode instruction */
88 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
89 	case INSN_REJECTED:	/* insn not supported */
90 		return -EINVAL;
91 
92 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
93 		p->ainsn.api.insn = NULL;
94 		break;
95 
96 	case INSN_GOOD:	/* instruction uses slot */
97 		p->ainsn.api.insn = get_insn_slot();
98 		if (!p->ainsn.api.insn)
99 			return -ENOMEM;
100 		break;
101 	}
102 
103 	/* prepare the instruction */
104 	if (p->ainsn.api.insn)
105 		arch_prepare_ss_slot(p);
106 	else
107 		arch_prepare_simulate(p);
108 
109 	return 0;
110 }
111 
112 void *alloc_insn_page(void)
113 {
114 	return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END,
115 			GFP_KERNEL, PAGE_KERNEL_ROX, VM_FLUSH_RESET_PERMS,
116 			NUMA_NO_NODE, __builtin_return_address(0));
117 }
118 
119 /* arm kprobe: install breakpoint in text */
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122 	void *addr = p->addr;
123 	u32 insn = BRK64_OPCODE_KPROBES;
124 
125 	aarch64_insn_patch_text(&addr, &insn, 1);
126 }
127 
128 /* disarm kprobe: remove breakpoint from text */
129 void __kprobes arch_disarm_kprobe(struct kprobe *p)
130 {
131 	void *addr = p->addr;
132 
133 	aarch64_insn_patch_text(&addr, &p->opcode, 1);
134 }
135 
136 void __kprobes arch_remove_kprobe(struct kprobe *p)
137 {
138 	if (p->ainsn.api.insn) {
139 		free_insn_slot(p->ainsn.api.insn, 0);
140 		p->ainsn.api.insn = NULL;
141 	}
142 }
143 
144 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
145 {
146 	kcb->prev_kprobe.kp = kprobe_running();
147 	kcb->prev_kprobe.status = kcb->kprobe_status;
148 }
149 
150 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
151 {
152 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
153 	kcb->kprobe_status = kcb->prev_kprobe.status;
154 }
155 
156 static void __kprobes set_current_kprobe(struct kprobe *p)
157 {
158 	__this_cpu_write(current_kprobe, p);
159 }
160 
161 /*
162  * Mask all of DAIF while executing the instruction out-of-line, to keep things
163  * simple and avoid nesting exceptions. Interrupts do have to be disabled since
164  * the kprobe state is per-CPU and doesn't get migrated.
165  */
166 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
167 						struct pt_regs *regs)
168 {
169 	kcb->saved_irqflag = regs->pstate & DAIF_MASK;
170 	regs->pstate |= DAIF_MASK;
171 }
172 
173 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
174 						struct pt_regs *regs)
175 {
176 	regs->pstate &= ~DAIF_MASK;
177 	regs->pstate |= kcb->saved_irqflag;
178 }
179 
180 static void __kprobes setup_singlestep(struct kprobe *p,
181 				       struct pt_regs *regs,
182 				       struct kprobe_ctlblk *kcb, int reenter)
183 {
184 	unsigned long slot;
185 
186 	if (reenter) {
187 		save_previous_kprobe(kcb);
188 		set_current_kprobe(p);
189 		kcb->kprobe_status = KPROBE_REENTER;
190 	} else {
191 		kcb->kprobe_status = KPROBE_HIT_SS;
192 	}
193 
194 
195 	if (p->ainsn.api.insn) {
196 		/* prepare for single stepping */
197 		slot = (unsigned long)p->ainsn.api.insn;
198 
199 		kprobes_save_local_irqflag(kcb, regs);
200 		instruction_pointer_set(regs, slot);
201 	} else {
202 		/* insn simulation */
203 		arch_simulate_insn(p, regs);
204 	}
205 }
206 
207 static int __kprobes reenter_kprobe(struct kprobe *p,
208 				    struct pt_regs *regs,
209 				    struct kprobe_ctlblk *kcb)
210 {
211 	switch (kcb->kprobe_status) {
212 	case KPROBE_HIT_SSDONE:
213 	case KPROBE_HIT_ACTIVE:
214 		kprobes_inc_nmissed_count(p);
215 		setup_singlestep(p, regs, kcb, 1);
216 		break;
217 	case KPROBE_HIT_SS:
218 	case KPROBE_REENTER:
219 		pr_warn("Unrecoverable kprobe detected.\n");
220 		dump_kprobe(p);
221 		BUG();
222 		break;
223 	default:
224 		WARN_ON(1);
225 		return 0;
226 	}
227 
228 	return 1;
229 }
230 
231 static void __kprobes
232 post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs)
233 {
234 	/* return addr restore if non-branching insn */
235 	if (cur->ainsn.api.restore != 0)
236 		instruction_pointer_set(regs, cur->ainsn.api.restore);
237 
238 	/* restore back original saved kprobe variables and continue */
239 	if (kcb->kprobe_status == KPROBE_REENTER) {
240 		restore_previous_kprobe(kcb);
241 		return;
242 	}
243 	/* call post handler */
244 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
245 	if (cur->post_handler)
246 		cur->post_handler(cur, regs, 0);
247 
248 	reset_current_kprobe();
249 }
250 
251 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
252 {
253 	struct kprobe *cur = kprobe_running();
254 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
255 
256 	switch (kcb->kprobe_status) {
257 	case KPROBE_HIT_SS:
258 	case KPROBE_REENTER:
259 		/*
260 		 * We are here because the instruction being single
261 		 * stepped caused a page fault. We reset the current
262 		 * kprobe and the ip points back to the probe address
263 		 * and allow the page fault handler to continue as a
264 		 * normal page fault.
265 		 */
266 		instruction_pointer_set(regs, (unsigned long) cur->addr);
267 		BUG_ON(!instruction_pointer(regs));
268 
269 		if (kcb->kprobe_status == KPROBE_REENTER) {
270 			restore_previous_kprobe(kcb);
271 		} else {
272 			kprobes_restore_local_irqflag(kcb, regs);
273 			reset_current_kprobe();
274 		}
275 
276 		break;
277 	case KPROBE_HIT_ACTIVE:
278 	case KPROBE_HIT_SSDONE:
279 		/*
280 		 * We increment the nmissed count for accounting,
281 		 * we can also use npre/npostfault count for accounting
282 		 * these specific fault cases.
283 		 */
284 		kprobes_inc_nmissed_count(cur);
285 
286 		/*
287 		 * We come here because instructions in the pre/post
288 		 * handler caused the page_fault, this could happen
289 		 * if handler tries to access user space by
290 		 * copy_from_user(), get_user() etc. Let the
291 		 * user-specified handler try to fix it first.
292 		 */
293 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
294 			return 1;
295 
296 		/*
297 		 * In case the user-specified fault handler returned
298 		 * zero, try to fix up.
299 		 */
300 		if (fixup_exception(regs))
301 			return 1;
302 	}
303 	return 0;
304 }
305 
306 static void __kprobes kprobe_handler(struct pt_regs *regs)
307 {
308 	struct kprobe *p, *cur_kprobe;
309 	struct kprobe_ctlblk *kcb;
310 	unsigned long addr = instruction_pointer(regs);
311 
312 	kcb = get_kprobe_ctlblk();
313 	cur_kprobe = kprobe_running();
314 
315 	p = get_kprobe((kprobe_opcode_t *) addr);
316 
317 	if (p) {
318 		if (cur_kprobe) {
319 			if (reenter_kprobe(p, regs, kcb))
320 				return;
321 		} else {
322 			/* Probe hit */
323 			set_current_kprobe(p);
324 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
325 
326 			/*
327 			 * If we have no pre-handler or it returned 0, we
328 			 * continue with normal processing.  If we have a
329 			 * pre-handler and it returned non-zero, it will
330 			 * modify the execution path and no need to single
331 			 * stepping. Let's just reset current kprobe and exit.
332 			 */
333 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
334 				setup_singlestep(p, regs, kcb, 0);
335 			} else
336 				reset_current_kprobe();
337 		}
338 	}
339 	/*
340 	 * The breakpoint instruction was removed right
341 	 * after we hit it.  Another cpu has removed
342 	 * either a probepoint or a debugger breakpoint
343 	 * at this address.  In either case, no further
344 	 * handling of this interrupt is appropriate.
345 	 * Return back to original instruction, and continue.
346 	 */
347 }
348 
349 static int __kprobes
350 kprobe_breakpoint_ss_handler(struct pt_regs *regs, unsigned int esr)
351 {
352 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
353 	unsigned long addr = instruction_pointer(regs);
354 	struct kprobe *cur = kprobe_running();
355 
356 	if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) &&
357 	    ((unsigned long)&cur->ainsn.api.insn[1] == addr)) {
358 		kprobes_restore_local_irqflag(kcb, regs);
359 		post_kprobe_handler(cur, kcb, regs);
360 
361 		return DBG_HOOK_HANDLED;
362 	}
363 
364 	/* not ours, kprobes should ignore it */
365 	return DBG_HOOK_ERROR;
366 }
367 
368 static struct break_hook kprobes_break_ss_hook = {
369 	.imm = KPROBES_BRK_SS_IMM,
370 	.fn = kprobe_breakpoint_ss_handler,
371 };
372 
373 static int __kprobes
374 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
375 {
376 	kprobe_handler(regs);
377 	return DBG_HOOK_HANDLED;
378 }
379 
380 static struct break_hook kprobes_break_hook = {
381 	.imm = KPROBES_BRK_IMM,
382 	.fn = kprobe_breakpoint_handler,
383 };
384 
385 /*
386  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
387  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
388  */
389 int __init arch_populate_kprobe_blacklist(void)
390 {
391 	int ret;
392 
393 	ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
394 					(unsigned long)__entry_text_end);
395 	if (ret)
396 		return ret;
397 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
398 					(unsigned long)__irqentry_text_end);
399 	if (ret)
400 		return ret;
401 	ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
402 					(unsigned long)__idmap_text_end);
403 	if (ret)
404 		return ret;
405 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
406 					(unsigned long)__hyp_text_end);
407 	if (ret || is_kernel_in_hyp_mode())
408 		return ret;
409 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
410 					(unsigned long)__hyp_idmap_text_end);
411 	return ret;
412 }
413 
414 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
415 {
416 	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline,
417 					(void *)kernel_stack_pointer(regs));
418 }
419 
420 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
421 				      struct pt_regs *regs)
422 {
423 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
424 	ri->fp = (void *)kernel_stack_pointer(regs);
425 
426 	/* replace return addr (x30) with trampoline */
427 	regs->regs[30] = (long)&kretprobe_trampoline;
428 }
429 
430 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
431 {
432 	return 0;
433 }
434 
435 int __init arch_init_kprobes(void)
436 {
437 	register_kernel_break_hook(&kprobes_break_hook);
438 	register_kernel_break_hook(&kprobes_break_ss_hook);
439 
440 	return 0;
441 }
442