1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/kernel/probes/kprobes.c 4 * 5 * Kprobes support for ARM64 6 * 7 * Copyright (C) 2013 Linaro Limited. 8 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 9 */ 10 #include <linux/kasan.h> 11 #include <linux/kernel.h> 12 #include <linux/kprobes.h> 13 #include <linux/extable.h> 14 #include <linux/slab.h> 15 #include <linux/stop_machine.h> 16 #include <linux/sched/debug.h> 17 #include <linux/set_memory.h> 18 #include <linux/stringify.h> 19 #include <linux/vmalloc.h> 20 #include <asm/traps.h> 21 #include <asm/ptrace.h> 22 #include <asm/cacheflush.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/system_misc.h> 25 #include <asm/insn.h> 26 #include <linux/uaccess.h> 27 #include <asm/irq.h> 28 #include <asm/sections.h> 29 30 #include "decode-insn.h" 31 32 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 33 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 34 35 static void __kprobes 36 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 37 38 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 39 { 40 void *addrs[1]; 41 u32 insns[1]; 42 43 addrs[0] = addr; 44 insns[0] = opcode; 45 46 return aarch64_insn_patch_text(addrs, insns, 1); 47 } 48 49 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 50 { 51 /* prepare insn slot */ 52 patch_text(p->ainsn.api.insn, p->opcode); 53 54 flush_icache_range((uintptr_t) (p->ainsn.api.insn), 55 (uintptr_t) (p->ainsn.api.insn) + 56 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 57 58 /* 59 * Needs restoring of return address after stepping xol. 60 */ 61 p->ainsn.api.restore = (unsigned long) p->addr + 62 sizeof(kprobe_opcode_t); 63 } 64 65 static void __kprobes arch_prepare_simulate(struct kprobe *p) 66 { 67 /* This instructions is not executed xol. No need to adjust the PC */ 68 p->ainsn.api.restore = 0; 69 } 70 71 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 72 { 73 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 74 75 if (p->ainsn.api.handler) 76 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); 77 78 /* single step simulated, now go for post processing */ 79 post_kprobe_handler(kcb, regs); 80 } 81 82 int __kprobes arch_prepare_kprobe(struct kprobe *p) 83 { 84 unsigned long probe_addr = (unsigned long)p->addr; 85 86 if (probe_addr & 0x3) 87 return -EINVAL; 88 89 /* copy instruction */ 90 p->opcode = le32_to_cpu(*p->addr); 91 92 if (search_exception_tables(probe_addr)) 93 return -EINVAL; 94 95 /* decode instruction */ 96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 97 case INSN_REJECTED: /* insn not supported */ 98 return -EINVAL; 99 100 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 101 p->ainsn.api.insn = NULL; 102 break; 103 104 case INSN_GOOD: /* instruction uses slot */ 105 p->ainsn.api.insn = get_insn_slot(); 106 if (!p->ainsn.api.insn) 107 return -ENOMEM; 108 break; 109 } 110 111 /* prepare the instruction */ 112 if (p->ainsn.api.insn) 113 arch_prepare_ss_slot(p); 114 else 115 arch_prepare_simulate(p); 116 117 return 0; 118 } 119 120 void *alloc_insn_page(void) 121 { 122 void *page; 123 124 page = vmalloc_exec(PAGE_SIZE); 125 if (page) { 126 set_memory_ro((unsigned long)page, 1); 127 set_vm_flush_reset_perms(page); 128 } 129 130 return page; 131 } 132 133 /* arm kprobe: install breakpoint in text */ 134 void __kprobes arch_arm_kprobe(struct kprobe *p) 135 { 136 patch_text(p->addr, BRK64_OPCODE_KPROBES); 137 } 138 139 /* disarm kprobe: remove breakpoint from text */ 140 void __kprobes arch_disarm_kprobe(struct kprobe *p) 141 { 142 patch_text(p->addr, p->opcode); 143 } 144 145 void __kprobes arch_remove_kprobe(struct kprobe *p) 146 { 147 if (p->ainsn.api.insn) { 148 free_insn_slot(p->ainsn.api.insn, 0); 149 p->ainsn.api.insn = NULL; 150 } 151 } 152 153 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 154 { 155 kcb->prev_kprobe.kp = kprobe_running(); 156 kcb->prev_kprobe.status = kcb->kprobe_status; 157 } 158 159 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 160 { 161 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 162 kcb->kprobe_status = kcb->prev_kprobe.status; 163 } 164 165 static void __kprobes set_current_kprobe(struct kprobe *p) 166 { 167 __this_cpu_write(current_kprobe, p); 168 } 169 170 /* 171 * When PSTATE.D is set (masked), then software step exceptions can not be 172 * generated. 173 * SPSR's D bit shows the value of PSTATE.D immediately before the 174 * exception was taken. PSTATE.D is set while entering into any exception 175 * mode, however software clears it for any normal (none-debug-exception) 176 * mode in the exception entry. Therefore, when we are entering into kprobe 177 * breakpoint handler from any normal mode then SPSR.D bit is already 178 * cleared, however it is set when we are entering from any debug exception 179 * mode. 180 * Since we always need to generate single step exception after a kprobe 181 * breakpoint exception therefore we need to clear it unconditionally, when 182 * we become sure that the current breakpoint exception is for kprobe. 183 */ 184 static void __kprobes 185 spsr_set_debug_flag(struct pt_regs *regs, int mask) 186 { 187 unsigned long spsr = regs->pstate; 188 189 if (mask) 190 spsr |= PSR_D_BIT; 191 else 192 spsr &= ~PSR_D_BIT; 193 194 regs->pstate = spsr; 195 } 196 197 /* 198 * Interrupts need to be disabled before single-step mode is set, and not 199 * reenabled until after single-step mode ends. 200 * Without disabling interrupt on local CPU, there is a chance of 201 * interrupt occurrence in the period of exception return and start of 202 * out-of-line single-step, that result in wrongly single stepping 203 * into the interrupt handler. 204 */ 205 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 206 struct pt_regs *regs) 207 { 208 kcb->saved_irqflag = regs->pstate; 209 regs->pstate |= PSR_I_BIT; 210 } 211 212 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 213 struct pt_regs *regs) 214 { 215 if (kcb->saved_irqflag & PSR_I_BIT) 216 regs->pstate |= PSR_I_BIT; 217 else 218 regs->pstate &= ~PSR_I_BIT; 219 } 220 221 static void __kprobes 222 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 223 { 224 kcb->ss_ctx.ss_pending = true; 225 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 226 } 227 228 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 229 { 230 kcb->ss_ctx.ss_pending = false; 231 kcb->ss_ctx.match_addr = 0; 232 } 233 234 static void __kprobes setup_singlestep(struct kprobe *p, 235 struct pt_regs *regs, 236 struct kprobe_ctlblk *kcb, int reenter) 237 { 238 unsigned long slot; 239 240 if (reenter) { 241 save_previous_kprobe(kcb); 242 set_current_kprobe(p); 243 kcb->kprobe_status = KPROBE_REENTER; 244 } else { 245 kcb->kprobe_status = KPROBE_HIT_SS; 246 } 247 248 249 if (p->ainsn.api.insn) { 250 /* prepare for single stepping */ 251 slot = (unsigned long)p->ainsn.api.insn; 252 253 set_ss_context(kcb, slot); /* mark pending ss */ 254 255 spsr_set_debug_flag(regs, 0); 256 257 /* IRQs and single stepping do not mix well. */ 258 kprobes_save_local_irqflag(kcb, regs); 259 kernel_enable_single_step(regs); 260 instruction_pointer_set(regs, slot); 261 } else { 262 /* insn simulation */ 263 arch_simulate_insn(p, regs); 264 } 265 } 266 267 static int __kprobes reenter_kprobe(struct kprobe *p, 268 struct pt_regs *regs, 269 struct kprobe_ctlblk *kcb) 270 { 271 switch (kcb->kprobe_status) { 272 case KPROBE_HIT_SSDONE: 273 case KPROBE_HIT_ACTIVE: 274 kprobes_inc_nmissed_count(p); 275 setup_singlestep(p, regs, kcb, 1); 276 break; 277 case KPROBE_HIT_SS: 278 case KPROBE_REENTER: 279 pr_warn("Unrecoverable kprobe detected.\n"); 280 dump_kprobe(p); 281 BUG(); 282 break; 283 default: 284 WARN_ON(1); 285 return 0; 286 } 287 288 return 1; 289 } 290 291 static void __kprobes 292 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 293 { 294 struct kprobe *cur = kprobe_running(); 295 296 if (!cur) 297 return; 298 299 /* return addr restore if non-branching insn */ 300 if (cur->ainsn.api.restore != 0) 301 instruction_pointer_set(regs, cur->ainsn.api.restore); 302 303 /* restore back original saved kprobe variables and continue */ 304 if (kcb->kprobe_status == KPROBE_REENTER) { 305 restore_previous_kprobe(kcb); 306 return; 307 } 308 /* call post handler */ 309 kcb->kprobe_status = KPROBE_HIT_SSDONE; 310 if (cur->post_handler) { 311 /* post_handler can hit breakpoint and single step 312 * again, so we enable D-flag for recursive exception. 313 */ 314 cur->post_handler(cur, regs, 0); 315 } 316 317 reset_current_kprobe(); 318 } 319 320 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 321 { 322 struct kprobe *cur = kprobe_running(); 323 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 324 325 switch (kcb->kprobe_status) { 326 case KPROBE_HIT_SS: 327 case KPROBE_REENTER: 328 /* 329 * We are here because the instruction being single 330 * stepped caused a page fault. We reset the current 331 * kprobe and the ip points back to the probe address 332 * and allow the page fault handler to continue as a 333 * normal page fault. 334 */ 335 instruction_pointer_set(regs, (unsigned long) cur->addr); 336 if (!instruction_pointer(regs)) 337 BUG(); 338 339 kernel_disable_single_step(); 340 341 if (kcb->kprobe_status == KPROBE_REENTER) 342 restore_previous_kprobe(kcb); 343 else 344 reset_current_kprobe(); 345 346 break; 347 case KPROBE_HIT_ACTIVE: 348 case KPROBE_HIT_SSDONE: 349 /* 350 * We increment the nmissed count for accounting, 351 * we can also use npre/npostfault count for accounting 352 * these specific fault cases. 353 */ 354 kprobes_inc_nmissed_count(cur); 355 356 /* 357 * We come here because instructions in the pre/post 358 * handler caused the page_fault, this could happen 359 * if handler tries to access user space by 360 * copy_from_user(), get_user() etc. Let the 361 * user-specified handler try to fix it first. 362 */ 363 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 364 return 1; 365 366 /* 367 * In case the user-specified fault handler returned 368 * zero, try to fix up. 369 */ 370 if (fixup_exception(regs)) 371 return 1; 372 } 373 return 0; 374 } 375 376 static void __kprobes kprobe_handler(struct pt_regs *regs) 377 { 378 struct kprobe *p, *cur_kprobe; 379 struct kprobe_ctlblk *kcb; 380 unsigned long addr = instruction_pointer(regs); 381 382 kcb = get_kprobe_ctlblk(); 383 cur_kprobe = kprobe_running(); 384 385 p = get_kprobe((kprobe_opcode_t *) addr); 386 387 if (p) { 388 if (cur_kprobe) { 389 if (reenter_kprobe(p, regs, kcb)) 390 return; 391 } else { 392 /* Probe hit */ 393 set_current_kprobe(p); 394 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 395 396 /* 397 * If we have no pre-handler or it returned 0, we 398 * continue with normal processing. If we have a 399 * pre-handler and it returned non-zero, it will 400 * modify the execution path and no need to single 401 * stepping. Let's just reset current kprobe and exit. 402 * 403 * pre_handler can hit a breakpoint and can step thru 404 * before return, keep PSTATE D-flag enabled until 405 * pre_handler return back. 406 */ 407 if (!p->pre_handler || !p->pre_handler(p, regs)) { 408 setup_singlestep(p, regs, kcb, 0); 409 } else 410 reset_current_kprobe(); 411 } 412 } 413 /* 414 * The breakpoint instruction was removed right 415 * after we hit it. Another cpu has removed 416 * either a probepoint or a debugger breakpoint 417 * at this address. In either case, no further 418 * handling of this interrupt is appropriate. 419 * Return back to original instruction, and continue. 420 */ 421 } 422 423 static int __kprobes 424 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 425 { 426 if ((kcb->ss_ctx.ss_pending) 427 && (kcb->ss_ctx.match_addr == addr)) { 428 clear_ss_context(kcb); /* clear pending ss */ 429 return DBG_HOOK_HANDLED; 430 } 431 /* not ours, kprobes should ignore it */ 432 return DBG_HOOK_ERROR; 433 } 434 435 static int __kprobes 436 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 437 { 438 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 439 int retval; 440 441 /* return error if this is not our step */ 442 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 443 444 if (retval == DBG_HOOK_HANDLED) { 445 kprobes_restore_local_irqflag(kcb, regs); 446 kernel_disable_single_step(); 447 448 post_kprobe_handler(kcb, regs); 449 } 450 451 return retval; 452 } 453 454 static struct step_hook kprobes_step_hook = { 455 .fn = kprobe_single_step_handler, 456 }; 457 458 static int __kprobes 459 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 460 { 461 kprobe_handler(regs); 462 return DBG_HOOK_HANDLED; 463 } 464 465 static struct break_hook kprobes_break_hook = { 466 .imm = KPROBES_BRK_IMM, 467 .fn = kprobe_breakpoint_handler, 468 }; 469 470 /* 471 * Provide a blacklist of symbols identifying ranges which cannot be kprobed. 472 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). 473 */ 474 int __init arch_populate_kprobe_blacklist(void) 475 { 476 int ret; 477 478 ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start, 479 (unsigned long)__entry_text_end); 480 if (ret) 481 return ret; 482 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 483 (unsigned long)__irqentry_text_end); 484 if (ret) 485 return ret; 486 ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start, 487 (unsigned long)__exception_text_end); 488 if (ret) 489 return ret; 490 ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start, 491 (unsigned long)__idmap_text_end); 492 if (ret) 493 return ret; 494 ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start, 495 (unsigned long)__hyp_text_end); 496 if (ret || is_kernel_in_hyp_mode()) 497 return ret; 498 ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start, 499 (unsigned long)__hyp_idmap_text_end); 500 return ret; 501 } 502 503 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 504 { 505 struct kretprobe_instance *ri = NULL; 506 struct hlist_head *head, empty_rp; 507 struct hlist_node *tmp; 508 unsigned long flags, orig_ret_address = 0; 509 unsigned long trampoline_address = 510 (unsigned long)&kretprobe_trampoline; 511 kprobe_opcode_t *correct_ret_addr = NULL; 512 513 INIT_HLIST_HEAD(&empty_rp); 514 kretprobe_hash_lock(current, &head, &flags); 515 516 /* 517 * It is possible to have multiple instances associated with a given 518 * task either because multiple functions in the call path have 519 * return probes installed on them, and/or more than one 520 * return probe was registered for a target function. 521 * 522 * We can handle this because: 523 * - instances are always pushed into the head of the list 524 * - when multiple return probes are registered for the same 525 * function, the (chronologically) first instance's ret_addr 526 * will be the real return address, and all the rest will 527 * point to kretprobe_trampoline. 528 */ 529 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 530 if (ri->task != current) 531 /* another task is sharing our hash bucket */ 532 continue; 533 534 orig_ret_address = (unsigned long)ri->ret_addr; 535 536 if (orig_ret_address != trampoline_address) 537 /* 538 * This is the real return address. Any other 539 * instances associated with this task are for 540 * other calls deeper on the call stack 541 */ 542 break; 543 } 544 545 kretprobe_assert(ri, orig_ret_address, trampoline_address); 546 547 correct_ret_addr = ri->ret_addr; 548 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 549 if (ri->task != current) 550 /* another task is sharing our hash bucket */ 551 continue; 552 553 orig_ret_address = (unsigned long)ri->ret_addr; 554 if (ri->rp && ri->rp->handler) { 555 __this_cpu_write(current_kprobe, &ri->rp->kp); 556 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 557 ri->ret_addr = correct_ret_addr; 558 ri->rp->handler(ri, regs); 559 __this_cpu_write(current_kprobe, NULL); 560 } 561 562 recycle_rp_inst(ri, &empty_rp); 563 564 if (orig_ret_address != trampoline_address) 565 /* 566 * This is the real return address. Any other 567 * instances associated with this task are for 568 * other calls deeper on the call stack 569 */ 570 break; 571 } 572 573 kretprobe_hash_unlock(current, &flags); 574 575 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 576 hlist_del(&ri->hlist); 577 kfree(ri); 578 } 579 return (void *)orig_ret_address; 580 } 581 582 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 583 struct pt_regs *regs) 584 { 585 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 586 587 /* replace return addr (x30) with trampoline */ 588 regs->regs[30] = (long)&kretprobe_trampoline; 589 } 590 591 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 592 { 593 return 0; 594 } 595 596 int __init arch_init_kprobes(void) 597 { 598 register_kernel_break_hook(&kprobes_break_hook); 599 register_kernel_step_hook(&kprobes_step_hook); 600 601 return 0; 602 } 603