xref: /openbmc/linux/arch/arm64/kernel/probes/kprobes.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/kernel/probes/kprobes.c
4  *
5  * Kprobes support for ARM64
6  *
7  * Copyright (C) 2013 Linaro Limited.
8  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9  */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/daifflags.h>
25 #include <asm/system_misc.h>
26 #include <asm/insn.h>
27 #include <linux/uaccess.h>
28 #include <asm/irq.h>
29 #include <asm/sections.h>
30 
31 #include "decode-insn.h"
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 static void __kprobes
37 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
38 
39 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
40 {
41 	kprobe_opcode_t *addr = p->ainsn.api.insn;
42 	void *addrs[] = {addr, addr + 1};
43 	u32 insns[] = {p->opcode, BRK64_OPCODE_KPROBES_SS};
44 
45 	/* prepare insn slot */
46 	aarch64_insn_patch_text(addrs, insns, 2);
47 
48 	flush_icache_range((uintptr_t)addr, (uintptr_t)(addr + MAX_INSN_SIZE));
49 
50 	/*
51 	 * Needs restoring of return address after stepping xol.
52 	 */
53 	p->ainsn.api.restore = (unsigned long) p->addr +
54 	  sizeof(kprobe_opcode_t);
55 }
56 
57 static void __kprobes arch_prepare_simulate(struct kprobe *p)
58 {
59 	/* This instructions is not executed xol. No need to adjust the PC */
60 	p->ainsn.api.restore = 0;
61 }
62 
63 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
64 {
65 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
66 
67 	if (p->ainsn.api.handler)
68 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
69 
70 	/* single step simulated, now go for post processing */
71 	post_kprobe_handler(kcb, regs);
72 }
73 
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
75 {
76 	unsigned long probe_addr = (unsigned long)p->addr;
77 
78 	if (probe_addr & 0x3)
79 		return -EINVAL;
80 
81 	/* copy instruction */
82 	p->opcode = le32_to_cpu(*p->addr);
83 
84 	if (search_exception_tables(probe_addr))
85 		return -EINVAL;
86 
87 	/* decode instruction */
88 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
89 	case INSN_REJECTED:	/* insn not supported */
90 		return -EINVAL;
91 
92 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
93 		p->ainsn.api.insn = NULL;
94 		break;
95 
96 	case INSN_GOOD:	/* instruction uses slot */
97 		p->ainsn.api.insn = get_insn_slot();
98 		if (!p->ainsn.api.insn)
99 			return -ENOMEM;
100 		break;
101 	}
102 
103 	/* prepare the instruction */
104 	if (p->ainsn.api.insn)
105 		arch_prepare_ss_slot(p);
106 	else
107 		arch_prepare_simulate(p);
108 
109 	return 0;
110 }
111 
112 void *alloc_insn_page(void)
113 {
114 	return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END,
115 			GFP_KERNEL, PAGE_KERNEL_ROX, VM_FLUSH_RESET_PERMS,
116 			NUMA_NO_NODE, __builtin_return_address(0));
117 }
118 
119 /* arm kprobe: install breakpoint in text */
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122 	void *addr = p->addr;
123 	u32 insn = BRK64_OPCODE_KPROBES;
124 
125 	aarch64_insn_patch_text(&addr, &insn, 1);
126 }
127 
128 /* disarm kprobe: remove breakpoint from text */
129 void __kprobes arch_disarm_kprobe(struct kprobe *p)
130 {
131 	void *addr = p->addr;
132 
133 	aarch64_insn_patch_text(&addr, &p->opcode, 1);
134 }
135 
136 void __kprobes arch_remove_kprobe(struct kprobe *p)
137 {
138 	if (p->ainsn.api.insn) {
139 		free_insn_slot(p->ainsn.api.insn, 0);
140 		p->ainsn.api.insn = NULL;
141 	}
142 }
143 
144 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
145 {
146 	kcb->prev_kprobe.kp = kprobe_running();
147 	kcb->prev_kprobe.status = kcb->kprobe_status;
148 }
149 
150 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
151 {
152 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
153 	kcb->kprobe_status = kcb->prev_kprobe.status;
154 }
155 
156 static void __kprobes set_current_kprobe(struct kprobe *p)
157 {
158 	__this_cpu_write(current_kprobe, p);
159 }
160 
161 /*
162  * Mask all of DAIF while executing the instruction out-of-line, to keep things
163  * simple and avoid nesting exceptions. Interrupts do have to be disabled since
164  * the kprobe state is per-CPU and doesn't get migrated.
165  */
166 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
167 						struct pt_regs *regs)
168 {
169 	kcb->saved_irqflag = regs->pstate & DAIF_MASK;
170 	regs->pstate |= DAIF_MASK;
171 }
172 
173 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
174 						struct pt_regs *regs)
175 {
176 	regs->pstate &= ~DAIF_MASK;
177 	regs->pstate |= kcb->saved_irqflag;
178 }
179 
180 static void __kprobes
181 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
182 {
183 	kcb->ss_ctx.ss_pending = true;
184 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
185 }
186 
187 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
188 {
189 	kcb->ss_ctx.ss_pending = false;
190 	kcb->ss_ctx.match_addr = 0;
191 }
192 
193 static void __kprobes setup_singlestep(struct kprobe *p,
194 				       struct pt_regs *regs,
195 				       struct kprobe_ctlblk *kcb, int reenter)
196 {
197 	unsigned long slot;
198 
199 	if (reenter) {
200 		save_previous_kprobe(kcb);
201 		set_current_kprobe(p);
202 		kcb->kprobe_status = KPROBE_REENTER;
203 	} else {
204 		kcb->kprobe_status = KPROBE_HIT_SS;
205 	}
206 
207 
208 	if (p->ainsn.api.insn) {
209 		/* prepare for single stepping */
210 		slot = (unsigned long)p->ainsn.api.insn;
211 
212 		set_ss_context(kcb, slot);	/* mark pending ss */
213 		kprobes_save_local_irqflag(kcb, regs);
214 		instruction_pointer_set(regs, slot);
215 	} else {
216 		/* insn simulation */
217 		arch_simulate_insn(p, regs);
218 	}
219 }
220 
221 static int __kprobes reenter_kprobe(struct kprobe *p,
222 				    struct pt_regs *regs,
223 				    struct kprobe_ctlblk *kcb)
224 {
225 	switch (kcb->kprobe_status) {
226 	case KPROBE_HIT_SSDONE:
227 	case KPROBE_HIT_ACTIVE:
228 		kprobes_inc_nmissed_count(p);
229 		setup_singlestep(p, regs, kcb, 1);
230 		break;
231 	case KPROBE_HIT_SS:
232 	case KPROBE_REENTER:
233 		pr_warn("Unrecoverable kprobe detected.\n");
234 		dump_kprobe(p);
235 		BUG();
236 		break;
237 	default:
238 		WARN_ON(1);
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static void __kprobes
246 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
247 {
248 	struct kprobe *cur = kprobe_running();
249 
250 	if (!cur)
251 		return;
252 
253 	/* return addr restore if non-branching insn */
254 	if (cur->ainsn.api.restore != 0)
255 		instruction_pointer_set(regs, cur->ainsn.api.restore);
256 
257 	/* restore back original saved kprobe variables and continue */
258 	if (kcb->kprobe_status == KPROBE_REENTER) {
259 		restore_previous_kprobe(kcb);
260 		return;
261 	}
262 	/* call post handler */
263 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
264 	if (cur->post_handler)
265 		cur->post_handler(cur, regs, 0);
266 
267 	reset_current_kprobe();
268 }
269 
270 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
271 {
272 	struct kprobe *cur = kprobe_running();
273 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
274 
275 	switch (kcb->kprobe_status) {
276 	case KPROBE_HIT_SS:
277 	case KPROBE_REENTER:
278 		/*
279 		 * We are here because the instruction being single
280 		 * stepped caused a page fault. We reset the current
281 		 * kprobe and the ip points back to the probe address
282 		 * and allow the page fault handler to continue as a
283 		 * normal page fault.
284 		 */
285 		instruction_pointer_set(regs, (unsigned long) cur->addr);
286 		if (!instruction_pointer(regs))
287 			BUG();
288 
289 		if (kcb->kprobe_status == KPROBE_REENTER)
290 			restore_previous_kprobe(kcb);
291 		else
292 			reset_current_kprobe();
293 
294 		break;
295 	case KPROBE_HIT_ACTIVE:
296 	case KPROBE_HIT_SSDONE:
297 		/*
298 		 * We increment the nmissed count for accounting,
299 		 * we can also use npre/npostfault count for accounting
300 		 * these specific fault cases.
301 		 */
302 		kprobes_inc_nmissed_count(cur);
303 
304 		/*
305 		 * We come here because instructions in the pre/post
306 		 * handler caused the page_fault, this could happen
307 		 * if handler tries to access user space by
308 		 * copy_from_user(), get_user() etc. Let the
309 		 * user-specified handler try to fix it first.
310 		 */
311 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
312 			return 1;
313 
314 		/*
315 		 * In case the user-specified fault handler returned
316 		 * zero, try to fix up.
317 		 */
318 		if (fixup_exception(regs))
319 			return 1;
320 	}
321 	return 0;
322 }
323 
324 static void __kprobes kprobe_handler(struct pt_regs *regs)
325 {
326 	struct kprobe *p, *cur_kprobe;
327 	struct kprobe_ctlblk *kcb;
328 	unsigned long addr = instruction_pointer(regs);
329 
330 	kcb = get_kprobe_ctlblk();
331 	cur_kprobe = kprobe_running();
332 
333 	p = get_kprobe((kprobe_opcode_t *) addr);
334 
335 	if (p) {
336 		if (cur_kprobe) {
337 			if (reenter_kprobe(p, regs, kcb))
338 				return;
339 		} else {
340 			/* Probe hit */
341 			set_current_kprobe(p);
342 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
343 
344 			/*
345 			 * If we have no pre-handler or it returned 0, we
346 			 * continue with normal processing.  If we have a
347 			 * pre-handler and it returned non-zero, it will
348 			 * modify the execution path and no need to single
349 			 * stepping. Let's just reset current kprobe and exit.
350 			 */
351 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
352 				setup_singlestep(p, regs, kcb, 0);
353 			} else
354 				reset_current_kprobe();
355 		}
356 	}
357 	/*
358 	 * The breakpoint instruction was removed right
359 	 * after we hit it.  Another cpu has removed
360 	 * either a probepoint or a debugger breakpoint
361 	 * at this address.  In either case, no further
362 	 * handling of this interrupt is appropriate.
363 	 * Return back to original instruction, and continue.
364 	 */
365 }
366 
367 static int __kprobes
368 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
369 {
370 	if ((kcb->ss_ctx.ss_pending)
371 	    && (kcb->ss_ctx.match_addr == addr)) {
372 		clear_ss_context(kcb);	/* clear pending ss */
373 		return DBG_HOOK_HANDLED;
374 	}
375 	/* not ours, kprobes should ignore it */
376 	return DBG_HOOK_ERROR;
377 }
378 
379 static int __kprobes
380 kprobe_breakpoint_ss_handler(struct pt_regs *regs, unsigned int esr)
381 {
382 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383 	int retval;
384 
385 	/* return error if this is not our step */
386 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
387 
388 	if (retval == DBG_HOOK_HANDLED) {
389 		kprobes_restore_local_irqflag(kcb, regs);
390 		post_kprobe_handler(kcb, regs);
391 	}
392 
393 	return retval;
394 }
395 
396 static struct break_hook kprobes_break_ss_hook = {
397 	.imm = KPROBES_BRK_SS_IMM,
398 	.fn = kprobe_breakpoint_ss_handler,
399 };
400 
401 static int __kprobes
402 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
403 {
404 	kprobe_handler(regs);
405 	return DBG_HOOK_HANDLED;
406 }
407 
408 static struct break_hook kprobes_break_hook = {
409 	.imm = KPROBES_BRK_IMM,
410 	.fn = kprobe_breakpoint_handler,
411 };
412 
413 /*
414  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
415  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
416  */
417 int __init arch_populate_kprobe_blacklist(void)
418 {
419 	int ret;
420 
421 	ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
422 					(unsigned long)__entry_text_end);
423 	if (ret)
424 		return ret;
425 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
426 					(unsigned long)__irqentry_text_end);
427 	if (ret)
428 		return ret;
429 	ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
430 					(unsigned long)__idmap_text_end);
431 	if (ret)
432 		return ret;
433 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
434 					(unsigned long)__hyp_text_end);
435 	if (ret || is_kernel_in_hyp_mode())
436 		return ret;
437 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
438 					(unsigned long)__hyp_idmap_text_end);
439 	return ret;
440 }
441 
442 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
443 {
444 	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline,
445 					(void *)kernel_stack_pointer(regs));
446 }
447 
448 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
449 				      struct pt_regs *regs)
450 {
451 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
452 	ri->fp = (void *)kernel_stack_pointer(regs);
453 
454 	/* replace return addr (x30) with trampoline */
455 	regs->regs[30] = (long)&kretprobe_trampoline;
456 }
457 
458 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
459 {
460 	return 0;
461 }
462 
463 int __init arch_init_kprobes(void)
464 {
465 	register_kernel_break_hook(&kprobes_break_hook);
466 	register_kernel_break_hook(&kprobes_break_ss_hook);
467 
468 	return 0;
469 }
470