1 /* 2 * arch/arm64/kernel/probes/kprobes.c 3 * 4 * Kprobes support for ARM64 5 * 6 * Copyright (C) 2013 Linaro Limited. 7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 */ 19 #include <linux/kasan.h> 20 #include <linux/kernel.h> 21 #include <linux/kprobes.h> 22 #include <linux/extable.h> 23 #include <linux/slab.h> 24 #include <linux/stop_machine.h> 25 #include <linux/sched/debug.h> 26 #include <linux/stringify.h> 27 #include <asm/traps.h> 28 #include <asm/ptrace.h> 29 #include <asm/cacheflush.h> 30 #include <asm/debug-monitors.h> 31 #include <asm/system_misc.h> 32 #include <asm/insn.h> 33 #include <linux/uaccess.h> 34 #include <asm/irq.h> 35 #include <asm/sections.h> 36 37 #include "decode-insn.h" 38 39 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 41 42 static void __kprobes 43 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 44 45 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 46 { 47 /* prepare insn slot */ 48 p->ainsn.api.insn[0] = cpu_to_le32(p->opcode); 49 50 flush_icache_range((uintptr_t) (p->ainsn.api.insn), 51 (uintptr_t) (p->ainsn.api.insn) + 52 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 53 54 /* 55 * Needs restoring of return address after stepping xol. 56 */ 57 p->ainsn.api.restore = (unsigned long) p->addr + 58 sizeof(kprobe_opcode_t); 59 } 60 61 static void __kprobes arch_prepare_simulate(struct kprobe *p) 62 { 63 /* This instructions is not executed xol. No need to adjust the PC */ 64 p->ainsn.api.restore = 0; 65 } 66 67 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 68 { 69 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 70 71 if (p->ainsn.api.handler) 72 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); 73 74 /* single step simulated, now go for post processing */ 75 post_kprobe_handler(kcb, regs); 76 } 77 78 int __kprobes arch_prepare_kprobe(struct kprobe *p) 79 { 80 unsigned long probe_addr = (unsigned long)p->addr; 81 extern char __start_rodata[]; 82 extern char __end_rodata[]; 83 84 if (probe_addr & 0x3) 85 return -EINVAL; 86 87 /* copy instruction */ 88 p->opcode = le32_to_cpu(*p->addr); 89 90 if (in_exception_text(probe_addr)) 91 return -EINVAL; 92 if (probe_addr >= (unsigned long) __start_rodata && 93 probe_addr <= (unsigned long) __end_rodata) 94 return -EINVAL; 95 96 /* decode instruction */ 97 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 98 case INSN_REJECTED: /* insn not supported */ 99 return -EINVAL; 100 101 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 102 p->ainsn.api.insn = NULL; 103 break; 104 105 case INSN_GOOD: /* instruction uses slot */ 106 p->ainsn.api.insn = get_insn_slot(); 107 if (!p->ainsn.api.insn) 108 return -ENOMEM; 109 break; 110 }; 111 112 /* prepare the instruction */ 113 if (p->ainsn.api.insn) 114 arch_prepare_ss_slot(p); 115 else 116 arch_prepare_simulate(p); 117 118 return 0; 119 } 120 121 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 122 { 123 void *addrs[1]; 124 u32 insns[1]; 125 126 addrs[0] = (void *)addr; 127 insns[0] = (u32)opcode; 128 129 return aarch64_insn_patch_text(addrs, insns, 1); 130 } 131 132 /* arm kprobe: install breakpoint in text */ 133 void __kprobes arch_arm_kprobe(struct kprobe *p) 134 { 135 patch_text(p->addr, BRK64_OPCODE_KPROBES); 136 } 137 138 /* disarm kprobe: remove breakpoint from text */ 139 void __kprobes arch_disarm_kprobe(struct kprobe *p) 140 { 141 patch_text(p->addr, p->opcode); 142 } 143 144 void __kprobes arch_remove_kprobe(struct kprobe *p) 145 { 146 if (p->ainsn.api.insn) { 147 free_insn_slot(p->ainsn.api.insn, 0); 148 p->ainsn.api.insn = NULL; 149 } 150 } 151 152 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 153 { 154 kcb->prev_kprobe.kp = kprobe_running(); 155 kcb->prev_kprobe.status = kcb->kprobe_status; 156 } 157 158 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 159 { 160 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 161 kcb->kprobe_status = kcb->prev_kprobe.status; 162 } 163 164 static void __kprobes set_current_kprobe(struct kprobe *p) 165 { 166 __this_cpu_write(current_kprobe, p); 167 } 168 169 /* 170 * When PSTATE.D is set (masked), then software step exceptions can not be 171 * generated. 172 * SPSR's D bit shows the value of PSTATE.D immediately before the 173 * exception was taken. PSTATE.D is set while entering into any exception 174 * mode, however software clears it for any normal (none-debug-exception) 175 * mode in the exception entry. Therefore, when we are entering into kprobe 176 * breakpoint handler from any normal mode then SPSR.D bit is already 177 * cleared, however it is set when we are entering from any debug exception 178 * mode. 179 * Since we always need to generate single step exception after a kprobe 180 * breakpoint exception therefore we need to clear it unconditionally, when 181 * we become sure that the current breakpoint exception is for kprobe. 182 */ 183 static void __kprobes 184 spsr_set_debug_flag(struct pt_regs *regs, int mask) 185 { 186 unsigned long spsr = regs->pstate; 187 188 if (mask) 189 spsr |= PSR_D_BIT; 190 else 191 spsr &= ~PSR_D_BIT; 192 193 regs->pstate = spsr; 194 } 195 196 /* 197 * Interrupts need to be disabled before single-step mode is set, and not 198 * reenabled until after single-step mode ends. 199 * Without disabling interrupt on local CPU, there is a chance of 200 * interrupt occurrence in the period of exception return and start of 201 * out-of-line single-step, that result in wrongly single stepping 202 * into the interrupt handler. 203 */ 204 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 205 struct pt_regs *regs) 206 { 207 kcb->saved_irqflag = regs->pstate; 208 regs->pstate |= PSR_I_BIT; 209 } 210 211 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 212 struct pt_regs *regs) 213 { 214 if (kcb->saved_irqflag & PSR_I_BIT) 215 regs->pstate |= PSR_I_BIT; 216 else 217 regs->pstate &= ~PSR_I_BIT; 218 } 219 220 static void __kprobes 221 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 222 { 223 kcb->ss_ctx.ss_pending = true; 224 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 225 } 226 227 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 228 { 229 kcb->ss_ctx.ss_pending = false; 230 kcb->ss_ctx.match_addr = 0; 231 } 232 233 static void __kprobes setup_singlestep(struct kprobe *p, 234 struct pt_regs *regs, 235 struct kprobe_ctlblk *kcb, int reenter) 236 { 237 unsigned long slot; 238 239 if (reenter) { 240 save_previous_kprobe(kcb); 241 set_current_kprobe(p); 242 kcb->kprobe_status = KPROBE_REENTER; 243 } else { 244 kcb->kprobe_status = KPROBE_HIT_SS; 245 } 246 247 248 if (p->ainsn.api.insn) { 249 /* prepare for single stepping */ 250 slot = (unsigned long)p->ainsn.api.insn; 251 252 set_ss_context(kcb, slot); /* mark pending ss */ 253 254 spsr_set_debug_flag(regs, 0); 255 256 /* IRQs and single stepping do not mix well. */ 257 kprobes_save_local_irqflag(kcb, regs); 258 kernel_enable_single_step(regs); 259 instruction_pointer_set(regs, slot); 260 } else { 261 /* insn simulation */ 262 arch_simulate_insn(p, regs); 263 } 264 } 265 266 static int __kprobes reenter_kprobe(struct kprobe *p, 267 struct pt_regs *regs, 268 struct kprobe_ctlblk *kcb) 269 { 270 switch (kcb->kprobe_status) { 271 case KPROBE_HIT_SSDONE: 272 case KPROBE_HIT_ACTIVE: 273 kprobes_inc_nmissed_count(p); 274 setup_singlestep(p, regs, kcb, 1); 275 break; 276 case KPROBE_HIT_SS: 277 case KPROBE_REENTER: 278 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr); 279 dump_kprobe(p); 280 BUG(); 281 break; 282 default: 283 WARN_ON(1); 284 return 0; 285 } 286 287 return 1; 288 } 289 290 static void __kprobes 291 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 292 { 293 struct kprobe *cur = kprobe_running(); 294 295 if (!cur) 296 return; 297 298 /* return addr restore if non-branching insn */ 299 if (cur->ainsn.api.restore != 0) 300 instruction_pointer_set(regs, cur->ainsn.api.restore); 301 302 /* restore back original saved kprobe variables and continue */ 303 if (kcb->kprobe_status == KPROBE_REENTER) { 304 restore_previous_kprobe(kcb); 305 return; 306 } 307 /* call post handler */ 308 kcb->kprobe_status = KPROBE_HIT_SSDONE; 309 if (cur->post_handler) { 310 /* post_handler can hit breakpoint and single step 311 * again, so we enable D-flag for recursive exception. 312 */ 313 cur->post_handler(cur, regs, 0); 314 } 315 316 reset_current_kprobe(); 317 } 318 319 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 320 { 321 struct kprobe *cur = kprobe_running(); 322 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 323 324 switch (kcb->kprobe_status) { 325 case KPROBE_HIT_SS: 326 case KPROBE_REENTER: 327 /* 328 * We are here because the instruction being single 329 * stepped caused a page fault. We reset the current 330 * kprobe and the ip points back to the probe address 331 * and allow the page fault handler to continue as a 332 * normal page fault. 333 */ 334 instruction_pointer_set(regs, (unsigned long) cur->addr); 335 if (!instruction_pointer(regs)) 336 BUG(); 337 338 kernel_disable_single_step(); 339 340 if (kcb->kprobe_status == KPROBE_REENTER) 341 restore_previous_kprobe(kcb); 342 else 343 reset_current_kprobe(); 344 345 break; 346 case KPROBE_HIT_ACTIVE: 347 case KPROBE_HIT_SSDONE: 348 /* 349 * We increment the nmissed count for accounting, 350 * we can also use npre/npostfault count for accounting 351 * these specific fault cases. 352 */ 353 kprobes_inc_nmissed_count(cur); 354 355 /* 356 * We come here because instructions in the pre/post 357 * handler caused the page_fault, this could happen 358 * if handler tries to access user space by 359 * copy_from_user(), get_user() etc. Let the 360 * user-specified handler try to fix it first. 361 */ 362 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 363 return 1; 364 365 /* 366 * In case the user-specified fault handler returned 367 * zero, try to fix up. 368 */ 369 if (fixup_exception(regs)) 370 return 1; 371 } 372 return 0; 373 } 374 375 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 376 unsigned long val, void *data) 377 { 378 return NOTIFY_DONE; 379 } 380 381 static void __kprobes kprobe_handler(struct pt_regs *regs) 382 { 383 struct kprobe *p, *cur_kprobe; 384 struct kprobe_ctlblk *kcb; 385 unsigned long addr = instruction_pointer(regs); 386 387 kcb = get_kprobe_ctlblk(); 388 cur_kprobe = kprobe_running(); 389 390 p = get_kprobe((kprobe_opcode_t *) addr); 391 392 if (p) { 393 if (cur_kprobe) { 394 if (reenter_kprobe(p, regs, kcb)) 395 return; 396 } else { 397 /* Probe hit */ 398 set_current_kprobe(p); 399 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 400 401 /* 402 * If we have no pre-handler or it returned 0, we 403 * continue with normal processing. If we have a 404 * pre-handler and it returned non-zero, it prepped 405 * for calling the break_handler below on re-entry, 406 * so get out doing nothing more here. 407 * 408 * pre_handler can hit a breakpoint and can step thru 409 * before return, keep PSTATE D-flag enabled until 410 * pre_handler return back. 411 */ 412 if (!p->pre_handler || !p->pre_handler(p, regs)) { 413 setup_singlestep(p, regs, kcb, 0); 414 return; 415 } 416 } 417 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) == 418 BRK64_OPCODE_KPROBES) && cur_kprobe) { 419 /* We probably hit a jprobe. Call its break handler. */ 420 if (cur_kprobe->break_handler && 421 cur_kprobe->break_handler(cur_kprobe, regs)) { 422 setup_singlestep(cur_kprobe, regs, kcb, 0); 423 return; 424 } 425 } 426 /* 427 * The breakpoint instruction was removed right 428 * after we hit it. Another cpu has removed 429 * either a probepoint or a debugger breakpoint 430 * at this address. In either case, no further 431 * handling of this interrupt is appropriate. 432 * Return back to original instruction, and continue. 433 */ 434 } 435 436 static int __kprobes 437 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 438 { 439 if ((kcb->ss_ctx.ss_pending) 440 && (kcb->ss_ctx.match_addr == addr)) { 441 clear_ss_context(kcb); /* clear pending ss */ 442 return DBG_HOOK_HANDLED; 443 } 444 /* not ours, kprobes should ignore it */ 445 return DBG_HOOK_ERROR; 446 } 447 448 int __kprobes 449 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 450 { 451 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 452 int retval; 453 454 /* return error if this is not our step */ 455 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 456 457 if (retval == DBG_HOOK_HANDLED) { 458 kprobes_restore_local_irqflag(kcb, regs); 459 kernel_disable_single_step(); 460 461 post_kprobe_handler(kcb, regs); 462 } 463 464 return retval; 465 } 466 467 int __kprobes 468 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 469 { 470 kprobe_handler(regs); 471 return DBG_HOOK_HANDLED; 472 } 473 474 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 475 { 476 struct jprobe *jp = container_of(p, struct jprobe, kp); 477 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 478 479 kcb->jprobe_saved_regs = *regs; 480 /* 481 * Since we can't be sure where in the stack frame "stacked" 482 * pass-by-value arguments are stored we just don't try to 483 * duplicate any of the stack. Do not use jprobes on functions that 484 * use more than 64 bytes (after padding each to an 8 byte boundary) 485 * of arguments, or pass individual arguments larger than 16 bytes. 486 */ 487 488 instruction_pointer_set(regs, (unsigned long) jp->entry); 489 preempt_disable(); 490 pause_graph_tracing(); 491 return 1; 492 } 493 494 void __kprobes jprobe_return(void) 495 { 496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 497 498 /* 499 * Jprobe handler return by entering break exception, 500 * encoded same as kprobe, but with following conditions 501 * -a special PC to identify it from the other kprobes. 502 * -restore stack addr to original saved pt_regs 503 */ 504 asm volatile(" mov sp, %0 \n" 505 "jprobe_return_break: brk %1 \n" 506 : 507 : "r" (kcb->jprobe_saved_regs.sp), 508 "I" (BRK64_ESR_KPROBES) 509 : "memory"); 510 511 unreachable(); 512 } 513 514 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 515 { 516 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 517 long stack_addr = kcb->jprobe_saved_regs.sp; 518 long orig_sp = kernel_stack_pointer(regs); 519 struct jprobe *jp = container_of(p, struct jprobe, kp); 520 extern const char jprobe_return_break[]; 521 522 if (instruction_pointer(regs) != (u64) jprobe_return_break) 523 return 0; 524 525 if (orig_sp != stack_addr) { 526 struct pt_regs *saved_regs = 527 (struct pt_regs *)kcb->jprobe_saved_regs.sp; 528 pr_err("current sp %lx does not match saved sp %lx\n", 529 orig_sp, stack_addr); 530 pr_err("Saved registers for jprobe %p\n", jp); 531 show_regs(saved_regs); 532 pr_err("Current registers\n"); 533 show_regs(regs); 534 BUG(); 535 } 536 unpause_graph_tracing(); 537 *regs = kcb->jprobe_saved_regs; 538 preempt_enable_no_resched(); 539 return 1; 540 } 541 542 bool arch_within_kprobe_blacklist(unsigned long addr) 543 { 544 if ((addr >= (unsigned long)__kprobes_text_start && 545 addr < (unsigned long)__kprobes_text_end) || 546 (addr >= (unsigned long)__entry_text_start && 547 addr < (unsigned long)__entry_text_end) || 548 (addr >= (unsigned long)__idmap_text_start && 549 addr < (unsigned long)__idmap_text_end) || 550 !!search_exception_tables(addr)) 551 return true; 552 553 if (!is_kernel_in_hyp_mode()) { 554 if ((addr >= (unsigned long)__hyp_text_start && 555 addr < (unsigned long)__hyp_text_end) || 556 (addr >= (unsigned long)__hyp_idmap_text_start && 557 addr < (unsigned long)__hyp_idmap_text_end)) 558 return true; 559 } 560 561 return false; 562 } 563 564 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 565 { 566 struct kretprobe_instance *ri = NULL; 567 struct hlist_head *head, empty_rp; 568 struct hlist_node *tmp; 569 unsigned long flags, orig_ret_address = 0; 570 unsigned long trampoline_address = 571 (unsigned long)&kretprobe_trampoline; 572 kprobe_opcode_t *correct_ret_addr = NULL; 573 574 INIT_HLIST_HEAD(&empty_rp); 575 kretprobe_hash_lock(current, &head, &flags); 576 577 /* 578 * It is possible to have multiple instances associated with a given 579 * task either because multiple functions in the call path have 580 * return probes installed on them, and/or more than one 581 * return probe was registered for a target function. 582 * 583 * We can handle this because: 584 * - instances are always pushed into the head of the list 585 * - when multiple return probes are registered for the same 586 * function, the (chronologically) first instance's ret_addr 587 * will be the real return address, and all the rest will 588 * point to kretprobe_trampoline. 589 */ 590 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 591 if (ri->task != current) 592 /* another task is sharing our hash bucket */ 593 continue; 594 595 orig_ret_address = (unsigned long)ri->ret_addr; 596 597 if (orig_ret_address != trampoline_address) 598 /* 599 * This is the real return address. Any other 600 * instances associated with this task are for 601 * other calls deeper on the call stack 602 */ 603 break; 604 } 605 606 kretprobe_assert(ri, orig_ret_address, trampoline_address); 607 608 correct_ret_addr = ri->ret_addr; 609 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 610 if (ri->task != current) 611 /* another task is sharing our hash bucket */ 612 continue; 613 614 orig_ret_address = (unsigned long)ri->ret_addr; 615 if (ri->rp && ri->rp->handler) { 616 __this_cpu_write(current_kprobe, &ri->rp->kp); 617 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 618 ri->ret_addr = correct_ret_addr; 619 ri->rp->handler(ri, regs); 620 __this_cpu_write(current_kprobe, NULL); 621 } 622 623 recycle_rp_inst(ri, &empty_rp); 624 625 if (orig_ret_address != trampoline_address) 626 /* 627 * This is the real return address. Any other 628 * instances associated with this task are for 629 * other calls deeper on the call stack 630 */ 631 break; 632 } 633 634 kretprobe_hash_unlock(current, &flags); 635 636 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 637 hlist_del(&ri->hlist); 638 kfree(ri); 639 } 640 return (void *)orig_ret_address; 641 } 642 643 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 644 struct pt_regs *regs) 645 { 646 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 647 648 /* replace return addr (x30) with trampoline */ 649 regs->regs[30] = (long)&kretprobe_trampoline; 650 } 651 652 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 653 { 654 return 0; 655 } 656 657 int __init arch_init_kprobes(void) 658 { 659 return 0; 660 } 661