1 /* 2 * arch/arm64/kernel/probes/kprobes.c 3 * 4 * Kprobes support for ARM64 5 * 6 * Copyright (C) 2013 Linaro Limited. 7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 */ 19 #include <linux/kasan.h> 20 #include <linux/kernel.h> 21 #include <linux/kprobes.h> 22 #include <linux/extable.h> 23 #include <linux/slab.h> 24 #include <linux/stop_machine.h> 25 #include <linux/stringify.h> 26 #include <asm/traps.h> 27 #include <asm/ptrace.h> 28 #include <asm/cacheflush.h> 29 #include <asm/debug-monitors.h> 30 #include <asm/system_misc.h> 31 #include <asm/insn.h> 32 #include <asm/uaccess.h> 33 #include <asm/irq.h> 34 #include <asm/sections.h> 35 36 #include "decode-insn.h" 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 static void __kprobes 42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 43 44 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 45 { 46 /* prepare insn slot */ 47 p->ainsn.insn[0] = cpu_to_le32(p->opcode); 48 49 flush_icache_range((uintptr_t) (p->ainsn.insn), 50 (uintptr_t) (p->ainsn.insn) + 51 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 52 53 /* 54 * Needs restoring of return address after stepping xol. 55 */ 56 p->ainsn.restore = (unsigned long) p->addr + 57 sizeof(kprobe_opcode_t); 58 } 59 60 static void __kprobes arch_prepare_simulate(struct kprobe *p) 61 { 62 /* This instructions is not executed xol. No need to adjust the PC */ 63 p->ainsn.restore = 0; 64 } 65 66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 67 { 68 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 69 70 if (p->ainsn.handler) 71 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs); 72 73 /* single step simulated, now go for post processing */ 74 post_kprobe_handler(kcb, regs); 75 } 76 77 int __kprobes arch_prepare_kprobe(struct kprobe *p) 78 { 79 unsigned long probe_addr = (unsigned long)p->addr; 80 extern char __start_rodata[]; 81 extern char __end_rodata[]; 82 83 if (probe_addr & 0x3) 84 return -EINVAL; 85 86 /* copy instruction */ 87 p->opcode = le32_to_cpu(*p->addr); 88 89 if (in_exception_text(probe_addr)) 90 return -EINVAL; 91 if (probe_addr >= (unsigned long) __start_rodata && 92 probe_addr <= (unsigned long) __end_rodata) 93 return -EINVAL; 94 95 /* decode instruction */ 96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 97 case INSN_REJECTED: /* insn not supported */ 98 return -EINVAL; 99 100 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 101 p->ainsn.insn = NULL; 102 break; 103 104 case INSN_GOOD: /* instruction uses slot */ 105 p->ainsn.insn = get_insn_slot(); 106 if (!p->ainsn.insn) 107 return -ENOMEM; 108 break; 109 }; 110 111 /* prepare the instruction */ 112 if (p->ainsn.insn) 113 arch_prepare_ss_slot(p); 114 else 115 arch_prepare_simulate(p); 116 117 return 0; 118 } 119 120 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 121 { 122 void *addrs[1]; 123 u32 insns[1]; 124 125 addrs[0] = (void *)addr; 126 insns[0] = (u32)opcode; 127 128 return aarch64_insn_patch_text(addrs, insns, 1); 129 } 130 131 /* arm kprobe: install breakpoint in text */ 132 void __kprobes arch_arm_kprobe(struct kprobe *p) 133 { 134 patch_text(p->addr, BRK64_OPCODE_KPROBES); 135 } 136 137 /* disarm kprobe: remove breakpoint from text */ 138 void __kprobes arch_disarm_kprobe(struct kprobe *p) 139 { 140 patch_text(p->addr, p->opcode); 141 } 142 143 void __kprobes arch_remove_kprobe(struct kprobe *p) 144 { 145 if (p->ainsn.insn) { 146 free_insn_slot(p->ainsn.insn, 0); 147 p->ainsn.insn = NULL; 148 } 149 } 150 151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 152 { 153 kcb->prev_kprobe.kp = kprobe_running(); 154 kcb->prev_kprobe.status = kcb->kprobe_status; 155 } 156 157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 158 { 159 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 160 kcb->kprobe_status = kcb->prev_kprobe.status; 161 } 162 163 static void __kprobes set_current_kprobe(struct kprobe *p) 164 { 165 __this_cpu_write(current_kprobe, p); 166 } 167 168 /* 169 * When PSTATE.D is set (masked), then software step exceptions can not be 170 * generated. 171 * SPSR's D bit shows the value of PSTATE.D immediately before the 172 * exception was taken. PSTATE.D is set while entering into any exception 173 * mode, however software clears it for any normal (none-debug-exception) 174 * mode in the exception entry. Therefore, when we are entering into kprobe 175 * breakpoint handler from any normal mode then SPSR.D bit is already 176 * cleared, however it is set when we are entering from any debug exception 177 * mode. 178 * Since we always need to generate single step exception after a kprobe 179 * breakpoint exception therefore we need to clear it unconditionally, when 180 * we become sure that the current breakpoint exception is for kprobe. 181 */ 182 static void __kprobes 183 spsr_set_debug_flag(struct pt_regs *regs, int mask) 184 { 185 unsigned long spsr = regs->pstate; 186 187 if (mask) 188 spsr |= PSR_D_BIT; 189 else 190 spsr &= ~PSR_D_BIT; 191 192 regs->pstate = spsr; 193 } 194 195 /* 196 * Interrupts need to be disabled before single-step mode is set, and not 197 * reenabled until after single-step mode ends. 198 * Without disabling interrupt on local CPU, there is a chance of 199 * interrupt occurrence in the period of exception return and start of 200 * out-of-line single-step, that result in wrongly single stepping 201 * into the interrupt handler. 202 */ 203 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 204 struct pt_regs *regs) 205 { 206 kcb->saved_irqflag = regs->pstate; 207 regs->pstate |= PSR_I_BIT; 208 } 209 210 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 211 struct pt_regs *regs) 212 { 213 if (kcb->saved_irqflag & PSR_I_BIT) 214 regs->pstate |= PSR_I_BIT; 215 else 216 regs->pstate &= ~PSR_I_BIT; 217 } 218 219 static void __kprobes 220 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 221 { 222 kcb->ss_ctx.ss_pending = true; 223 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 224 } 225 226 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 227 { 228 kcb->ss_ctx.ss_pending = false; 229 kcb->ss_ctx.match_addr = 0; 230 } 231 232 static void __kprobes setup_singlestep(struct kprobe *p, 233 struct pt_regs *regs, 234 struct kprobe_ctlblk *kcb, int reenter) 235 { 236 unsigned long slot; 237 238 if (reenter) { 239 save_previous_kprobe(kcb); 240 set_current_kprobe(p); 241 kcb->kprobe_status = KPROBE_REENTER; 242 } else { 243 kcb->kprobe_status = KPROBE_HIT_SS; 244 } 245 246 247 if (p->ainsn.insn) { 248 /* prepare for single stepping */ 249 slot = (unsigned long)p->ainsn.insn; 250 251 set_ss_context(kcb, slot); /* mark pending ss */ 252 253 spsr_set_debug_flag(regs, 0); 254 255 /* IRQs and single stepping do not mix well. */ 256 kprobes_save_local_irqflag(kcb, regs); 257 kernel_enable_single_step(regs); 258 instruction_pointer_set(regs, slot); 259 } else { 260 /* insn simulation */ 261 arch_simulate_insn(p, regs); 262 } 263 } 264 265 static int __kprobes reenter_kprobe(struct kprobe *p, 266 struct pt_regs *regs, 267 struct kprobe_ctlblk *kcb) 268 { 269 switch (kcb->kprobe_status) { 270 case KPROBE_HIT_SSDONE: 271 case KPROBE_HIT_ACTIVE: 272 kprobes_inc_nmissed_count(p); 273 setup_singlestep(p, regs, kcb, 1); 274 break; 275 case KPROBE_HIT_SS: 276 case KPROBE_REENTER: 277 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr); 278 dump_kprobe(p); 279 BUG(); 280 break; 281 default: 282 WARN_ON(1); 283 return 0; 284 } 285 286 return 1; 287 } 288 289 static void __kprobes 290 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 291 { 292 struct kprobe *cur = kprobe_running(); 293 294 if (!cur) 295 return; 296 297 /* return addr restore if non-branching insn */ 298 if (cur->ainsn.restore != 0) 299 instruction_pointer_set(regs, cur->ainsn.restore); 300 301 /* restore back original saved kprobe variables and continue */ 302 if (kcb->kprobe_status == KPROBE_REENTER) { 303 restore_previous_kprobe(kcb); 304 return; 305 } 306 /* call post handler */ 307 kcb->kprobe_status = KPROBE_HIT_SSDONE; 308 if (cur->post_handler) { 309 /* post_handler can hit breakpoint and single step 310 * again, so we enable D-flag for recursive exception. 311 */ 312 cur->post_handler(cur, regs, 0); 313 } 314 315 reset_current_kprobe(); 316 } 317 318 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 319 { 320 struct kprobe *cur = kprobe_running(); 321 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 322 323 switch (kcb->kprobe_status) { 324 case KPROBE_HIT_SS: 325 case KPROBE_REENTER: 326 /* 327 * We are here because the instruction being single 328 * stepped caused a page fault. We reset the current 329 * kprobe and the ip points back to the probe address 330 * and allow the page fault handler to continue as a 331 * normal page fault. 332 */ 333 instruction_pointer_set(regs, (unsigned long) cur->addr); 334 if (!instruction_pointer(regs)) 335 BUG(); 336 337 kernel_disable_single_step(); 338 339 if (kcb->kprobe_status == KPROBE_REENTER) 340 restore_previous_kprobe(kcb); 341 else 342 reset_current_kprobe(); 343 344 break; 345 case KPROBE_HIT_ACTIVE: 346 case KPROBE_HIT_SSDONE: 347 /* 348 * We increment the nmissed count for accounting, 349 * we can also use npre/npostfault count for accounting 350 * these specific fault cases. 351 */ 352 kprobes_inc_nmissed_count(cur); 353 354 /* 355 * We come here because instructions in the pre/post 356 * handler caused the page_fault, this could happen 357 * if handler tries to access user space by 358 * copy_from_user(), get_user() etc. Let the 359 * user-specified handler try to fix it first. 360 */ 361 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 362 return 1; 363 364 /* 365 * In case the user-specified fault handler returned 366 * zero, try to fix up. 367 */ 368 if (fixup_exception(regs)) 369 return 1; 370 } 371 return 0; 372 } 373 374 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 375 unsigned long val, void *data) 376 { 377 return NOTIFY_DONE; 378 } 379 380 static void __kprobes kprobe_handler(struct pt_regs *regs) 381 { 382 struct kprobe *p, *cur_kprobe; 383 struct kprobe_ctlblk *kcb; 384 unsigned long addr = instruction_pointer(regs); 385 386 kcb = get_kprobe_ctlblk(); 387 cur_kprobe = kprobe_running(); 388 389 p = get_kprobe((kprobe_opcode_t *) addr); 390 391 if (p) { 392 if (cur_kprobe) { 393 if (reenter_kprobe(p, regs, kcb)) 394 return; 395 } else { 396 /* Probe hit */ 397 set_current_kprobe(p); 398 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 399 400 /* 401 * If we have no pre-handler or it returned 0, we 402 * continue with normal processing. If we have a 403 * pre-handler and it returned non-zero, it prepped 404 * for calling the break_handler below on re-entry, 405 * so get out doing nothing more here. 406 * 407 * pre_handler can hit a breakpoint and can step thru 408 * before return, keep PSTATE D-flag enabled until 409 * pre_handler return back. 410 */ 411 if (!p->pre_handler || !p->pre_handler(p, regs)) { 412 setup_singlestep(p, regs, kcb, 0); 413 return; 414 } 415 } 416 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) == 417 BRK64_OPCODE_KPROBES) && cur_kprobe) { 418 /* We probably hit a jprobe. Call its break handler. */ 419 if (cur_kprobe->break_handler && 420 cur_kprobe->break_handler(cur_kprobe, regs)) { 421 setup_singlestep(cur_kprobe, regs, kcb, 0); 422 return; 423 } 424 } 425 /* 426 * The breakpoint instruction was removed right 427 * after we hit it. Another cpu has removed 428 * either a probepoint or a debugger breakpoint 429 * at this address. In either case, no further 430 * handling of this interrupt is appropriate. 431 * Return back to original instruction, and continue. 432 */ 433 } 434 435 static int __kprobes 436 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 437 { 438 if ((kcb->ss_ctx.ss_pending) 439 && (kcb->ss_ctx.match_addr == addr)) { 440 clear_ss_context(kcb); /* clear pending ss */ 441 return DBG_HOOK_HANDLED; 442 } 443 /* not ours, kprobes should ignore it */ 444 return DBG_HOOK_ERROR; 445 } 446 447 int __kprobes 448 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 449 { 450 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 451 int retval; 452 453 /* return error if this is not our step */ 454 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 455 456 if (retval == DBG_HOOK_HANDLED) { 457 kprobes_restore_local_irqflag(kcb, regs); 458 kernel_disable_single_step(); 459 460 post_kprobe_handler(kcb, regs); 461 } 462 463 return retval; 464 } 465 466 int __kprobes 467 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 468 { 469 kprobe_handler(regs); 470 return DBG_HOOK_HANDLED; 471 } 472 473 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 474 { 475 struct jprobe *jp = container_of(p, struct jprobe, kp); 476 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 477 478 kcb->jprobe_saved_regs = *regs; 479 /* 480 * Since we can't be sure where in the stack frame "stacked" 481 * pass-by-value arguments are stored we just don't try to 482 * duplicate any of the stack. Do not use jprobes on functions that 483 * use more than 64 bytes (after padding each to an 8 byte boundary) 484 * of arguments, or pass individual arguments larger than 16 bytes. 485 */ 486 487 instruction_pointer_set(regs, (unsigned long) jp->entry); 488 preempt_disable(); 489 pause_graph_tracing(); 490 return 1; 491 } 492 493 void __kprobes jprobe_return(void) 494 { 495 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 496 497 /* 498 * Jprobe handler return by entering break exception, 499 * encoded same as kprobe, but with following conditions 500 * -a special PC to identify it from the other kprobes. 501 * -restore stack addr to original saved pt_regs 502 */ 503 asm volatile(" mov sp, %0 \n" 504 "jprobe_return_break: brk %1 \n" 505 : 506 : "r" (kcb->jprobe_saved_regs.sp), 507 "I" (BRK64_ESR_KPROBES) 508 : "memory"); 509 510 unreachable(); 511 } 512 513 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 514 { 515 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 516 long stack_addr = kcb->jprobe_saved_regs.sp; 517 long orig_sp = kernel_stack_pointer(regs); 518 struct jprobe *jp = container_of(p, struct jprobe, kp); 519 extern const char jprobe_return_break[]; 520 521 if (instruction_pointer(regs) != (u64) jprobe_return_break) 522 return 0; 523 524 if (orig_sp != stack_addr) { 525 struct pt_regs *saved_regs = 526 (struct pt_regs *)kcb->jprobe_saved_regs.sp; 527 pr_err("current sp %lx does not match saved sp %lx\n", 528 orig_sp, stack_addr); 529 pr_err("Saved registers for jprobe %p\n", jp); 530 show_regs(saved_regs); 531 pr_err("Current registers\n"); 532 show_regs(regs); 533 BUG(); 534 } 535 unpause_graph_tracing(); 536 *regs = kcb->jprobe_saved_regs; 537 preempt_enable_no_resched(); 538 return 1; 539 } 540 541 bool arch_within_kprobe_blacklist(unsigned long addr) 542 { 543 if ((addr >= (unsigned long)__kprobes_text_start && 544 addr < (unsigned long)__kprobes_text_end) || 545 (addr >= (unsigned long)__entry_text_start && 546 addr < (unsigned long)__entry_text_end) || 547 (addr >= (unsigned long)__idmap_text_start && 548 addr < (unsigned long)__idmap_text_end) || 549 !!search_exception_tables(addr)) 550 return true; 551 552 if (!is_kernel_in_hyp_mode()) { 553 if ((addr >= (unsigned long)__hyp_text_start && 554 addr < (unsigned long)__hyp_text_end) || 555 (addr >= (unsigned long)__hyp_idmap_text_start && 556 addr < (unsigned long)__hyp_idmap_text_end)) 557 return true; 558 } 559 560 return false; 561 } 562 563 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 564 { 565 struct kretprobe_instance *ri = NULL; 566 struct hlist_head *head, empty_rp; 567 struct hlist_node *tmp; 568 unsigned long flags, orig_ret_address = 0; 569 unsigned long trampoline_address = 570 (unsigned long)&kretprobe_trampoline; 571 kprobe_opcode_t *correct_ret_addr = NULL; 572 573 INIT_HLIST_HEAD(&empty_rp); 574 kretprobe_hash_lock(current, &head, &flags); 575 576 /* 577 * It is possible to have multiple instances associated with a given 578 * task either because multiple functions in the call path have 579 * return probes installed on them, and/or more than one 580 * return probe was registered for a target function. 581 * 582 * We can handle this because: 583 * - instances are always pushed into the head of the list 584 * - when multiple return probes are registered for the same 585 * function, the (chronologically) first instance's ret_addr 586 * will be the real return address, and all the rest will 587 * point to kretprobe_trampoline. 588 */ 589 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 590 if (ri->task != current) 591 /* another task is sharing our hash bucket */ 592 continue; 593 594 orig_ret_address = (unsigned long)ri->ret_addr; 595 596 if (orig_ret_address != trampoline_address) 597 /* 598 * This is the real return address. Any other 599 * instances associated with this task are for 600 * other calls deeper on the call stack 601 */ 602 break; 603 } 604 605 kretprobe_assert(ri, orig_ret_address, trampoline_address); 606 607 correct_ret_addr = ri->ret_addr; 608 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 609 if (ri->task != current) 610 /* another task is sharing our hash bucket */ 611 continue; 612 613 orig_ret_address = (unsigned long)ri->ret_addr; 614 if (ri->rp && ri->rp->handler) { 615 __this_cpu_write(current_kprobe, &ri->rp->kp); 616 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 617 ri->ret_addr = correct_ret_addr; 618 ri->rp->handler(ri, regs); 619 __this_cpu_write(current_kprobe, NULL); 620 } 621 622 recycle_rp_inst(ri, &empty_rp); 623 624 if (orig_ret_address != trampoline_address) 625 /* 626 * This is the real return address. Any other 627 * instances associated with this task are for 628 * other calls deeper on the call stack 629 */ 630 break; 631 } 632 633 kretprobe_hash_unlock(current, &flags); 634 635 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 636 hlist_del(&ri->hlist); 637 kfree(ri); 638 } 639 return (void *)orig_ret_address; 640 } 641 642 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 643 struct pt_regs *regs) 644 { 645 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 646 647 /* replace return addr (x30) with trampoline */ 648 regs->regs[30] = (long)&kretprobe_trampoline; 649 } 650 651 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 652 { 653 return 0; 654 } 655 656 int __init arch_init_kprobes(void) 657 { 658 return 0; 659 } 660