xref: /openbmc/linux/arch/arm64/kernel/probes/kprobes.c (revision 791d3ef2)
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/extable.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/sched/debug.h>
26 #include <linux/stringify.h>
27 #include <asm/traps.h>
28 #include <asm/ptrace.h>
29 #include <asm/cacheflush.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/system_misc.h>
32 #include <asm/insn.h>
33 #include <linux/uaccess.h>
34 #include <asm/irq.h>
35 #include <asm/sections.h>
36 
37 #include "decode-insn.h"
38 
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 
42 static void __kprobes
43 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
44 
45 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
46 {
47 	/* prepare insn slot */
48 	p->ainsn.api.insn[0] = cpu_to_le32(p->opcode);
49 
50 	flush_icache_range((uintptr_t) (p->ainsn.api.insn),
51 			   (uintptr_t) (p->ainsn.api.insn) +
52 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53 
54 	/*
55 	 * Needs restoring of return address after stepping xol.
56 	 */
57 	p->ainsn.api.restore = (unsigned long) p->addr +
58 	  sizeof(kprobe_opcode_t);
59 }
60 
61 static void __kprobes arch_prepare_simulate(struct kprobe *p)
62 {
63 	/* This instructions is not executed xol. No need to adjust the PC */
64 	p->ainsn.api.restore = 0;
65 }
66 
67 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
68 {
69 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
70 
71 	if (p->ainsn.api.handler)
72 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
73 
74 	/* single step simulated, now go for post processing */
75 	post_kprobe_handler(kcb, regs);
76 }
77 
78 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 {
80 	unsigned long probe_addr = (unsigned long)p->addr;
81 	extern char __start_rodata[];
82 	extern char __end_rodata[];
83 
84 	if (probe_addr & 0x3)
85 		return -EINVAL;
86 
87 	/* copy instruction */
88 	p->opcode = le32_to_cpu(*p->addr);
89 
90 	if (in_exception_text(probe_addr))
91 		return -EINVAL;
92 	if (probe_addr >= (unsigned long) __start_rodata &&
93 	    probe_addr <= (unsigned long) __end_rodata)
94 		return -EINVAL;
95 
96 	/* decode instruction */
97 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
98 	case INSN_REJECTED:	/* insn not supported */
99 		return -EINVAL;
100 
101 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
102 		p->ainsn.api.insn = NULL;
103 		break;
104 
105 	case INSN_GOOD:	/* instruction uses slot */
106 		p->ainsn.api.insn = get_insn_slot();
107 		if (!p->ainsn.api.insn)
108 			return -ENOMEM;
109 		break;
110 	};
111 
112 	/* prepare the instruction */
113 	if (p->ainsn.api.insn)
114 		arch_prepare_ss_slot(p);
115 	else
116 		arch_prepare_simulate(p);
117 
118 	return 0;
119 }
120 
121 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
122 {
123 	void *addrs[1];
124 	u32 insns[1];
125 
126 	addrs[0] = (void *)addr;
127 	insns[0] = (u32)opcode;
128 
129 	return aarch64_insn_patch_text(addrs, insns, 1);
130 }
131 
132 /* arm kprobe: install breakpoint in text */
133 void __kprobes arch_arm_kprobe(struct kprobe *p)
134 {
135 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
136 }
137 
138 /* disarm kprobe: remove breakpoint from text */
139 void __kprobes arch_disarm_kprobe(struct kprobe *p)
140 {
141 	patch_text(p->addr, p->opcode);
142 }
143 
144 void __kprobes arch_remove_kprobe(struct kprobe *p)
145 {
146 	if (p->ainsn.api.insn) {
147 		free_insn_slot(p->ainsn.api.insn, 0);
148 		p->ainsn.api.insn = NULL;
149 	}
150 }
151 
152 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
153 {
154 	kcb->prev_kprobe.kp = kprobe_running();
155 	kcb->prev_kprobe.status = kcb->kprobe_status;
156 }
157 
158 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
159 {
160 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
161 	kcb->kprobe_status = kcb->prev_kprobe.status;
162 }
163 
164 static void __kprobes set_current_kprobe(struct kprobe *p)
165 {
166 	__this_cpu_write(current_kprobe, p);
167 }
168 
169 /*
170  * When PSTATE.D is set (masked), then software step exceptions can not be
171  * generated.
172  * SPSR's D bit shows the value of PSTATE.D immediately before the
173  * exception was taken. PSTATE.D is set while entering into any exception
174  * mode, however software clears it for any normal (none-debug-exception)
175  * mode in the exception entry. Therefore, when we are entering into kprobe
176  * breakpoint handler from any normal mode then SPSR.D bit is already
177  * cleared, however it is set when we are entering from any debug exception
178  * mode.
179  * Since we always need to generate single step exception after a kprobe
180  * breakpoint exception therefore we need to clear it unconditionally, when
181  * we become sure that the current breakpoint exception is for kprobe.
182  */
183 static void __kprobes
184 spsr_set_debug_flag(struct pt_regs *regs, int mask)
185 {
186 	unsigned long spsr = regs->pstate;
187 
188 	if (mask)
189 		spsr |= PSR_D_BIT;
190 	else
191 		spsr &= ~PSR_D_BIT;
192 
193 	regs->pstate = spsr;
194 }
195 
196 /*
197  * Interrupts need to be disabled before single-step mode is set, and not
198  * reenabled until after single-step mode ends.
199  * Without disabling interrupt on local CPU, there is a chance of
200  * interrupt occurrence in the period of exception return and  start of
201  * out-of-line single-step, that result in wrongly single stepping
202  * into the interrupt handler.
203  */
204 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
205 						struct pt_regs *regs)
206 {
207 	kcb->saved_irqflag = regs->pstate;
208 	regs->pstate |= PSR_I_BIT;
209 }
210 
211 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
212 						struct pt_regs *regs)
213 {
214 	if (kcb->saved_irqflag & PSR_I_BIT)
215 		regs->pstate |= PSR_I_BIT;
216 	else
217 		regs->pstate &= ~PSR_I_BIT;
218 }
219 
220 static void __kprobes
221 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
222 {
223 	kcb->ss_ctx.ss_pending = true;
224 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
225 }
226 
227 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
228 {
229 	kcb->ss_ctx.ss_pending = false;
230 	kcb->ss_ctx.match_addr = 0;
231 }
232 
233 static void __kprobes setup_singlestep(struct kprobe *p,
234 				       struct pt_regs *regs,
235 				       struct kprobe_ctlblk *kcb, int reenter)
236 {
237 	unsigned long slot;
238 
239 	if (reenter) {
240 		save_previous_kprobe(kcb);
241 		set_current_kprobe(p);
242 		kcb->kprobe_status = KPROBE_REENTER;
243 	} else {
244 		kcb->kprobe_status = KPROBE_HIT_SS;
245 	}
246 
247 
248 	if (p->ainsn.api.insn) {
249 		/* prepare for single stepping */
250 		slot = (unsigned long)p->ainsn.api.insn;
251 
252 		set_ss_context(kcb, slot);	/* mark pending ss */
253 
254 		spsr_set_debug_flag(regs, 0);
255 
256 		/* IRQs and single stepping do not mix well. */
257 		kprobes_save_local_irqflag(kcb, regs);
258 		kernel_enable_single_step(regs);
259 		instruction_pointer_set(regs, slot);
260 	} else {
261 		/* insn simulation */
262 		arch_simulate_insn(p, regs);
263 	}
264 }
265 
266 static int __kprobes reenter_kprobe(struct kprobe *p,
267 				    struct pt_regs *regs,
268 				    struct kprobe_ctlblk *kcb)
269 {
270 	switch (kcb->kprobe_status) {
271 	case KPROBE_HIT_SSDONE:
272 	case KPROBE_HIT_ACTIVE:
273 		kprobes_inc_nmissed_count(p);
274 		setup_singlestep(p, regs, kcb, 1);
275 		break;
276 	case KPROBE_HIT_SS:
277 	case KPROBE_REENTER:
278 		pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
279 		dump_kprobe(p);
280 		BUG();
281 		break;
282 	default:
283 		WARN_ON(1);
284 		return 0;
285 	}
286 
287 	return 1;
288 }
289 
290 static void __kprobes
291 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
292 {
293 	struct kprobe *cur = kprobe_running();
294 
295 	if (!cur)
296 		return;
297 
298 	/* return addr restore if non-branching insn */
299 	if (cur->ainsn.api.restore != 0)
300 		instruction_pointer_set(regs, cur->ainsn.api.restore);
301 
302 	/* restore back original saved kprobe variables and continue */
303 	if (kcb->kprobe_status == KPROBE_REENTER) {
304 		restore_previous_kprobe(kcb);
305 		return;
306 	}
307 	/* call post handler */
308 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
309 	if (cur->post_handler)	{
310 		/* post_handler can hit breakpoint and single step
311 		 * again, so we enable D-flag for recursive exception.
312 		 */
313 		cur->post_handler(cur, regs, 0);
314 	}
315 
316 	reset_current_kprobe();
317 }
318 
319 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320 {
321 	struct kprobe *cur = kprobe_running();
322 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323 
324 	switch (kcb->kprobe_status) {
325 	case KPROBE_HIT_SS:
326 	case KPROBE_REENTER:
327 		/*
328 		 * We are here because the instruction being single
329 		 * stepped caused a page fault. We reset the current
330 		 * kprobe and the ip points back to the probe address
331 		 * and allow the page fault handler to continue as a
332 		 * normal page fault.
333 		 */
334 		instruction_pointer_set(regs, (unsigned long) cur->addr);
335 		if (!instruction_pointer(regs))
336 			BUG();
337 
338 		kernel_disable_single_step();
339 
340 		if (kcb->kprobe_status == KPROBE_REENTER)
341 			restore_previous_kprobe(kcb);
342 		else
343 			reset_current_kprobe();
344 
345 		break;
346 	case KPROBE_HIT_ACTIVE:
347 	case KPROBE_HIT_SSDONE:
348 		/*
349 		 * We increment the nmissed count for accounting,
350 		 * we can also use npre/npostfault count for accounting
351 		 * these specific fault cases.
352 		 */
353 		kprobes_inc_nmissed_count(cur);
354 
355 		/*
356 		 * We come here because instructions in the pre/post
357 		 * handler caused the page_fault, this could happen
358 		 * if handler tries to access user space by
359 		 * copy_from_user(), get_user() etc. Let the
360 		 * user-specified handler try to fix it first.
361 		 */
362 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
363 			return 1;
364 
365 		/*
366 		 * In case the user-specified fault handler returned
367 		 * zero, try to fix up.
368 		 */
369 		if (fixup_exception(regs))
370 			return 1;
371 	}
372 	return 0;
373 }
374 
375 static void __kprobes kprobe_handler(struct pt_regs *regs)
376 {
377 	struct kprobe *p, *cur_kprobe;
378 	struct kprobe_ctlblk *kcb;
379 	unsigned long addr = instruction_pointer(regs);
380 
381 	kcb = get_kprobe_ctlblk();
382 	cur_kprobe = kprobe_running();
383 
384 	p = get_kprobe((kprobe_opcode_t *) addr);
385 
386 	if (p) {
387 		if (cur_kprobe) {
388 			if (reenter_kprobe(p, regs, kcb))
389 				return;
390 		} else {
391 			/* Probe hit */
392 			set_current_kprobe(p);
393 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
394 
395 			/*
396 			 * If we have no pre-handler or it returned 0, we
397 			 * continue with normal processing.  If we have a
398 			 * pre-handler and it returned non-zero, it prepped
399 			 * for calling the break_handler below on re-entry,
400 			 * so get out doing nothing more here.
401 			 *
402 			 * pre_handler can hit a breakpoint and can step thru
403 			 * before return, keep PSTATE D-flag enabled until
404 			 * pre_handler return back.
405 			 */
406 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
407 				setup_singlestep(p, regs, kcb, 0);
408 				return;
409 			}
410 		}
411 	} else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
412 	    BRK64_OPCODE_KPROBES) && cur_kprobe) {
413 		/* We probably hit a jprobe.  Call its break handler. */
414 		if (cur_kprobe->break_handler  &&
415 		     cur_kprobe->break_handler(cur_kprobe, regs)) {
416 			setup_singlestep(cur_kprobe, regs, kcb, 0);
417 			return;
418 		}
419 	}
420 	/*
421 	 * The breakpoint instruction was removed right
422 	 * after we hit it.  Another cpu has removed
423 	 * either a probepoint or a debugger breakpoint
424 	 * at this address.  In either case, no further
425 	 * handling of this interrupt is appropriate.
426 	 * Return back to original instruction, and continue.
427 	 */
428 }
429 
430 static int __kprobes
431 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
432 {
433 	if ((kcb->ss_ctx.ss_pending)
434 	    && (kcb->ss_ctx.match_addr == addr)) {
435 		clear_ss_context(kcb);	/* clear pending ss */
436 		return DBG_HOOK_HANDLED;
437 	}
438 	/* not ours, kprobes should ignore it */
439 	return DBG_HOOK_ERROR;
440 }
441 
442 int __kprobes
443 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
444 {
445 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
446 	int retval;
447 
448 	/* return error if this is not our step */
449 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
450 
451 	if (retval == DBG_HOOK_HANDLED) {
452 		kprobes_restore_local_irqflag(kcb, regs);
453 		kernel_disable_single_step();
454 
455 		post_kprobe_handler(kcb, regs);
456 	}
457 
458 	return retval;
459 }
460 
461 int __kprobes
462 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
463 {
464 	kprobe_handler(regs);
465 	return DBG_HOOK_HANDLED;
466 }
467 
468 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
469 {
470 	struct jprobe *jp = container_of(p, struct jprobe, kp);
471 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
472 
473 	kcb->jprobe_saved_regs = *regs;
474 	/*
475 	 * Since we can't be sure where in the stack frame "stacked"
476 	 * pass-by-value arguments are stored we just don't try to
477 	 * duplicate any of the stack. Do not use jprobes on functions that
478 	 * use more than 64 bytes (after padding each to an 8 byte boundary)
479 	 * of arguments, or pass individual arguments larger than 16 bytes.
480 	 */
481 
482 	instruction_pointer_set(regs, (unsigned long) jp->entry);
483 	preempt_disable();
484 	pause_graph_tracing();
485 	return 1;
486 }
487 
488 void __kprobes jprobe_return(void)
489 {
490 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
491 
492 	/*
493 	 * Jprobe handler return by entering break exception,
494 	 * encoded same as kprobe, but with following conditions
495 	 * -a special PC to identify it from the other kprobes.
496 	 * -restore stack addr to original saved pt_regs
497 	 */
498 	asm volatile("				mov sp, %0	\n"
499 		     "jprobe_return_break:	brk %1		\n"
500 		     :
501 		     : "r" (kcb->jprobe_saved_regs.sp),
502 		       "I" (BRK64_ESR_KPROBES)
503 		     : "memory");
504 
505 	unreachable();
506 }
507 
508 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
509 {
510 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
511 	long stack_addr = kcb->jprobe_saved_regs.sp;
512 	long orig_sp = kernel_stack_pointer(regs);
513 	struct jprobe *jp = container_of(p, struct jprobe, kp);
514 	extern const char jprobe_return_break[];
515 
516 	if (instruction_pointer(regs) != (u64) jprobe_return_break)
517 		return 0;
518 
519 	if (orig_sp != stack_addr) {
520 		struct pt_regs *saved_regs =
521 		    (struct pt_regs *)kcb->jprobe_saved_regs.sp;
522 		pr_err("current sp %lx does not match saved sp %lx\n",
523 		       orig_sp, stack_addr);
524 		pr_err("Saved registers for jprobe %p\n", jp);
525 		__show_regs(saved_regs);
526 		pr_err("Current registers\n");
527 		__show_regs(regs);
528 		BUG();
529 	}
530 	unpause_graph_tracing();
531 	*regs = kcb->jprobe_saved_regs;
532 	preempt_enable_no_resched();
533 	return 1;
534 }
535 
536 bool arch_within_kprobe_blacklist(unsigned long addr)
537 {
538 	if ((addr >= (unsigned long)__kprobes_text_start &&
539 	    addr < (unsigned long)__kprobes_text_end) ||
540 	    (addr >= (unsigned long)__entry_text_start &&
541 	    addr < (unsigned long)__entry_text_end) ||
542 	    (addr >= (unsigned long)__idmap_text_start &&
543 	    addr < (unsigned long)__idmap_text_end) ||
544 	    !!search_exception_tables(addr))
545 		return true;
546 
547 	if (!is_kernel_in_hyp_mode()) {
548 		if ((addr >= (unsigned long)__hyp_text_start &&
549 		    addr < (unsigned long)__hyp_text_end) ||
550 		    (addr >= (unsigned long)__hyp_idmap_text_start &&
551 		    addr < (unsigned long)__hyp_idmap_text_end))
552 			return true;
553 	}
554 
555 	return false;
556 }
557 
558 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
559 {
560 	struct kretprobe_instance *ri = NULL;
561 	struct hlist_head *head, empty_rp;
562 	struct hlist_node *tmp;
563 	unsigned long flags, orig_ret_address = 0;
564 	unsigned long trampoline_address =
565 		(unsigned long)&kretprobe_trampoline;
566 	kprobe_opcode_t *correct_ret_addr = NULL;
567 
568 	INIT_HLIST_HEAD(&empty_rp);
569 	kretprobe_hash_lock(current, &head, &flags);
570 
571 	/*
572 	 * It is possible to have multiple instances associated with a given
573 	 * task either because multiple functions in the call path have
574 	 * return probes installed on them, and/or more than one
575 	 * return probe was registered for a target function.
576 	 *
577 	 * We can handle this because:
578 	 *     - instances are always pushed into the head of the list
579 	 *     - when multiple return probes are registered for the same
580 	 *	 function, the (chronologically) first instance's ret_addr
581 	 *	 will be the real return address, and all the rest will
582 	 *	 point to kretprobe_trampoline.
583 	 */
584 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
585 		if (ri->task != current)
586 			/* another task is sharing our hash bucket */
587 			continue;
588 
589 		orig_ret_address = (unsigned long)ri->ret_addr;
590 
591 		if (orig_ret_address != trampoline_address)
592 			/*
593 			 * This is the real return address. Any other
594 			 * instances associated with this task are for
595 			 * other calls deeper on the call stack
596 			 */
597 			break;
598 	}
599 
600 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
601 
602 	correct_ret_addr = ri->ret_addr;
603 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
604 		if (ri->task != current)
605 			/* another task is sharing our hash bucket */
606 			continue;
607 
608 		orig_ret_address = (unsigned long)ri->ret_addr;
609 		if (ri->rp && ri->rp->handler) {
610 			__this_cpu_write(current_kprobe, &ri->rp->kp);
611 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
612 			ri->ret_addr = correct_ret_addr;
613 			ri->rp->handler(ri, regs);
614 			__this_cpu_write(current_kprobe, NULL);
615 		}
616 
617 		recycle_rp_inst(ri, &empty_rp);
618 
619 		if (orig_ret_address != trampoline_address)
620 			/*
621 			 * This is the real return address. Any other
622 			 * instances associated with this task are for
623 			 * other calls deeper on the call stack
624 			 */
625 			break;
626 	}
627 
628 	kretprobe_hash_unlock(current, &flags);
629 
630 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
631 		hlist_del(&ri->hlist);
632 		kfree(ri);
633 	}
634 	return (void *)orig_ret_address;
635 }
636 
637 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
638 				      struct pt_regs *regs)
639 {
640 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
641 
642 	/* replace return addr (x30) with trampoline */
643 	regs->regs[30] = (long)&kretprobe_trampoline;
644 }
645 
646 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
647 {
648 	return 0;
649 }
650 
651 int __init arch_init_kprobes(void)
652 {
653 	return 0;
654 }
655