1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/kernel/probes/kprobes.c 4 * 5 * Kprobes support for ARM64 6 * 7 * Copyright (C) 2013 Linaro Limited. 8 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 9 */ 10 #include <linux/kasan.h> 11 #include <linux/kernel.h> 12 #include <linux/kprobes.h> 13 #include <linux/extable.h> 14 #include <linux/slab.h> 15 #include <linux/stop_machine.h> 16 #include <linux/sched/debug.h> 17 #include <linux/set_memory.h> 18 #include <linux/stringify.h> 19 #include <linux/vmalloc.h> 20 #include <asm/traps.h> 21 #include <asm/ptrace.h> 22 #include <asm/cacheflush.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/system_misc.h> 25 #include <asm/insn.h> 26 #include <linux/uaccess.h> 27 #include <asm/irq.h> 28 #include <asm/sections.h> 29 30 #include "decode-insn.h" 31 32 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 33 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 34 35 static void __kprobes 36 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 37 38 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 39 { 40 void *addrs[1]; 41 u32 insns[1]; 42 43 addrs[0] = addr; 44 insns[0] = opcode; 45 46 return aarch64_insn_patch_text(addrs, insns, 1); 47 } 48 49 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 50 { 51 /* prepare insn slot */ 52 patch_text(p->ainsn.api.insn, p->opcode); 53 54 flush_icache_range((uintptr_t) (p->ainsn.api.insn), 55 (uintptr_t) (p->ainsn.api.insn) + 56 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 57 58 /* 59 * Needs restoring of return address after stepping xol. 60 */ 61 p->ainsn.api.restore = (unsigned long) p->addr + 62 sizeof(kprobe_opcode_t); 63 } 64 65 static void __kprobes arch_prepare_simulate(struct kprobe *p) 66 { 67 /* This instructions is not executed xol. No need to adjust the PC */ 68 p->ainsn.api.restore = 0; 69 } 70 71 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 72 { 73 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 74 75 if (p->ainsn.api.handler) 76 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); 77 78 /* single step simulated, now go for post processing */ 79 post_kprobe_handler(kcb, regs); 80 } 81 82 int __kprobes arch_prepare_kprobe(struct kprobe *p) 83 { 84 unsigned long probe_addr = (unsigned long)p->addr; 85 86 if (probe_addr & 0x3) 87 return -EINVAL; 88 89 /* copy instruction */ 90 p->opcode = le32_to_cpu(*p->addr); 91 92 if (search_exception_tables(probe_addr)) 93 return -EINVAL; 94 95 /* decode instruction */ 96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 97 case INSN_REJECTED: /* insn not supported */ 98 return -EINVAL; 99 100 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 101 p->ainsn.api.insn = NULL; 102 break; 103 104 case INSN_GOOD: /* instruction uses slot */ 105 p->ainsn.api.insn = get_insn_slot(); 106 if (!p->ainsn.api.insn) 107 return -ENOMEM; 108 break; 109 } 110 111 /* prepare the instruction */ 112 if (p->ainsn.api.insn) 113 arch_prepare_ss_slot(p); 114 else 115 arch_prepare_simulate(p); 116 117 return 0; 118 } 119 120 void *alloc_insn_page(void) 121 { 122 void *page; 123 124 page = vmalloc_exec(PAGE_SIZE); 125 if (page) 126 set_memory_ro((unsigned long)page, 1); 127 128 return page; 129 } 130 131 /* arm kprobe: install breakpoint in text */ 132 void __kprobes arch_arm_kprobe(struct kprobe *p) 133 { 134 patch_text(p->addr, BRK64_OPCODE_KPROBES); 135 } 136 137 /* disarm kprobe: remove breakpoint from text */ 138 void __kprobes arch_disarm_kprobe(struct kprobe *p) 139 { 140 patch_text(p->addr, p->opcode); 141 } 142 143 void __kprobes arch_remove_kprobe(struct kprobe *p) 144 { 145 if (p->ainsn.api.insn) { 146 free_insn_slot(p->ainsn.api.insn, 0); 147 p->ainsn.api.insn = NULL; 148 } 149 } 150 151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 152 { 153 kcb->prev_kprobe.kp = kprobe_running(); 154 kcb->prev_kprobe.status = kcb->kprobe_status; 155 } 156 157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 158 { 159 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 160 kcb->kprobe_status = kcb->prev_kprobe.status; 161 } 162 163 static void __kprobes set_current_kprobe(struct kprobe *p) 164 { 165 __this_cpu_write(current_kprobe, p); 166 } 167 168 /* 169 * When PSTATE.D is set (masked), then software step exceptions can not be 170 * generated. 171 * SPSR's D bit shows the value of PSTATE.D immediately before the 172 * exception was taken. PSTATE.D is set while entering into any exception 173 * mode, however software clears it for any normal (none-debug-exception) 174 * mode in the exception entry. Therefore, when we are entering into kprobe 175 * breakpoint handler from any normal mode then SPSR.D bit is already 176 * cleared, however it is set when we are entering from any debug exception 177 * mode. 178 * Since we always need to generate single step exception after a kprobe 179 * breakpoint exception therefore we need to clear it unconditionally, when 180 * we become sure that the current breakpoint exception is for kprobe. 181 */ 182 static void __kprobes 183 spsr_set_debug_flag(struct pt_regs *regs, int mask) 184 { 185 unsigned long spsr = regs->pstate; 186 187 if (mask) 188 spsr |= PSR_D_BIT; 189 else 190 spsr &= ~PSR_D_BIT; 191 192 regs->pstate = spsr; 193 } 194 195 /* 196 * Interrupts need to be disabled before single-step mode is set, and not 197 * reenabled until after single-step mode ends. 198 * Without disabling interrupt on local CPU, there is a chance of 199 * interrupt occurrence in the period of exception return and start of 200 * out-of-line single-step, that result in wrongly single stepping 201 * into the interrupt handler. 202 */ 203 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 204 struct pt_regs *regs) 205 { 206 kcb->saved_irqflag = regs->pstate; 207 regs->pstate |= PSR_I_BIT; 208 } 209 210 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 211 struct pt_regs *regs) 212 { 213 if (kcb->saved_irqflag & PSR_I_BIT) 214 regs->pstate |= PSR_I_BIT; 215 else 216 regs->pstate &= ~PSR_I_BIT; 217 } 218 219 static void __kprobes 220 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 221 { 222 kcb->ss_ctx.ss_pending = true; 223 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 224 } 225 226 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 227 { 228 kcb->ss_ctx.ss_pending = false; 229 kcb->ss_ctx.match_addr = 0; 230 } 231 232 static void __kprobes setup_singlestep(struct kprobe *p, 233 struct pt_regs *regs, 234 struct kprobe_ctlblk *kcb, int reenter) 235 { 236 unsigned long slot; 237 238 if (reenter) { 239 save_previous_kprobe(kcb); 240 set_current_kprobe(p); 241 kcb->kprobe_status = KPROBE_REENTER; 242 } else { 243 kcb->kprobe_status = KPROBE_HIT_SS; 244 } 245 246 247 if (p->ainsn.api.insn) { 248 /* prepare for single stepping */ 249 slot = (unsigned long)p->ainsn.api.insn; 250 251 set_ss_context(kcb, slot); /* mark pending ss */ 252 253 spsr_set_debug_flag(regs, 0); 254 255 /* IRQs and single stepping do not mix well. */ 256 kprobes_save_local_irqflag(kcb, regs); 257 kernel_enable_single_step(regs); 258 instruction_pointer_set(regs, slot); 259 } else { 260 /* insn simulation */ 261 arch_simulate_insn(p, regs); 262 } 263 } 264 265 static int __kprobes reenter_kprobe(struct kprobe *p, 266 struct pt_regs *regs, 267 struct kprobe_ctlblk *kcb) 268 { 269 switch (kcb->kprobe_status) { 270 case KPROBE_HIT_SSDONE: 271 case KPROBE_HIT_ACTIVE: 272 kprobes_inc_nmissed_count(p); 273 setup_singlestep(p, regs, kcb, 1); 274 break; 275 case KPROBE_HIT_SS: 276 case KPROBE_REENTER: 277 pr_warn("Unrecoverable kprobe detected.\n"); 278 dump_kprobe(p); 279 BUG(); 280 break; 281 default: 282 WARN_ON(1); 283 return 0; 284 } 285 286 return 1; 287 } 288 289 static void __kprobes 290 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 291 { 292 struct kprobe *cur = kprobe_running(); 293 294 if (!cur) 295 return; 296 297 /* return addr restore if non-branching insn */ 298 if (cur->ainsn.api.restore != 0) 299 instruction_pointer_set(regs, cur->ainsn.api.restore); 300 301 /* restore back original saved kprobe variables and continue */ 302 if (kcb->kprobe_status == KPROBE_REENTER) { 303 restore_previous_kprobe(kcb); 304 return; 305 } 306 /* call post handler */ 307 kcb->kprobe_status = KPROBE_HIT_SSDONE; 308 if (cur->post_handler) { 309 /* post_handler can hit breakpoint and single step 310 * again, so we enable D-flag for recursive exception. 311 */ 312 cur->post_handler(cur, regs, 0); 313 } 314 315 reset_current_kprobe(); 316 } 317 318 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 319 { 320 struct kprobe *cur = kprobe_running(); 321 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 322 323 switch (kcb->kprobe_status) { 324 case KPROBE_HIT_SS: 325 case KPROBE_REENTER: 326 /* 327 * We are here because the instruction being single 328 * stepped caused a page fault. We reset the current 329 * kprobe and the ip points back to the probe address 330 * and allow the page fault handler to continue as a 331 * normal page fault. 332 */ 333 instruction_pointer_set(regs, (unsigned long) cur->addr); 334 if (!instruction_pointer(regs)) 335 BUG(); 336 337 kernel_disable_single_step(); 338 339 if (kcb->kprobe_status == KPROBE_REENTER) 340 restore_previous_kprobe(kcb); 341 else 342 reset_current_kprobe(); 343 344 break; 345 case KPROBE_HIT_ACTIVE: 346 case KPROBE_HIT_SSDONE: 347 /* 348 * We increment the nmissed count for accounting, 349 * we can also use npre/npostfault count for accounting 350 * these specific fault cases. 351 */ 352 kprobes_inc_nmissed_count(cur); 353 354 /* 355 * We come here because instructions in the pre/post 356 * handler caused the page_fault, this could happen 357 * if handler tries to access user space by 358 * copy_from_user(), get_user() etc. Let the 359 * user-specified handler try to fix it first. 360 */ 361 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 362 return 1; 363 364 /* 365 * In case the user-specified fault handler returned 366 * zero, try to fix up. 367 */ 368 if (fixup_exception(regs)) 369 return 1; 370 } 371 return 0; 372 } 373 374 static void __kprobes kprobe_handler(struct pt_regs *regs) 375 { 376 struct kprobe *p, *cur_kprobe; 377 struct kprobe_ctlblk *kcb; 378 unsigned long addr = instruction_pointer(regs); 379 380 kcb = get_kprobe_ctlblk(); 381 cur_kprobe = kprobe_running(); 382 383 p = get_kprobe((kprobe_opcode_t *) addr); 384 385 if (p) { 386 if (cur_kprobe) { 387 if (reenter_kprobe(p, regs, kcb)) 388 return; 389 } else { 390 /* Probe hit */ 391 set_current_kprobe(p); 392 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 393 394 /* 395 * If we have no pre-handler or it returned 0, we 396 * continue with normal processing. If we have a 397 * pre-handler and it returned non-zero, it will 398 * modify the execution path and no need to single 399 * stepping. Let's just reset current kprobe and exit. 400 * 401 * pre_handler can hit a breakpoint and can step thru 402 * before return, keep PSTATE D-flag enabled until 403 * pre_handler return back. 404 */ 405 if (!p->pre_handler || !p->pre_handler(p, regs)) { 406 setup_singlestep(p, regs, kcb, 0); 407 } else 408 reset_current_kprobe(); 409 } 410 } 411 /* 412 * The breakpoint instruction was removed right 413 * after we hit it. Another cpu has removed 414 * either a probepoint or a debugger breakpoint 415 * at this address. In either case, no further 416 * handling of this interrupt is appropriate. 417 * Return back to original instruction, and continue. 418 */ 419 } 420 421 static int __kprobes 422 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 423 { 424 if ((kcb->ss_ctx.ss_pending) 425 && (kcb->ss_ctx.match_addr == addr)) { 426 clear_ss_context(kcb); /* clear pending ss */ 427 return DBG_HOOK_HANDLED; 428 } 429 /* not ours, kprobes should ignore it */ 430 return DBG_HOOK_ERROR; 431 } 432 433 static int __kprobes 434 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 435 { 436 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 437 int retval; 438 439 /* return error if this is not our step */ 440 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 441 442 if (retval == DBG_HOOK_HANDLED) { 443 kprobes_restore_local_irqflag(kcb, regs); 444 kernel_disable_single_step(); 445 446 post_kprobe_handler(kcb, regs); 447 } 448 449 return retval; 450 } 451 452 static struct step_hook kprobes_step_hook = { 453 .fn = kprobe_single_step_handler, 454 }; 455 456 static int __kprobes 457 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 458 { 459 kprobe_handler(regs); 460 return DBG_HOOK_HANDLED; 461 } 462 463 static struct break_hook kprobes_break_hook = { 464 .imm = KPROBES_BRK_IMM, 465 .fn = kprobe_breakpoint_handler, 466 }; 467 468 /* 469 * Provide a blacklist of symbols identifying ranges which cannot be kprobed. 470 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). 471 */ 472 int __init arch_populate_kprobe_blacklist(void) 473 { 474 int ret; 475 476 ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start, 477 (unsigned long)__entry_text_end); 478 if (ret) 479 return ret; 480 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 481 (unsigned long)__irqentry_text_end); 482 if (ret) 483 return ret; 484 ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start, 485 (unsigned long)__exception_text_end); 486 if (ret) 487 return ret; 488 ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start, 489 (unsigned long)__idmap_text_end); 490 if (ret) 491 return ret; 492 ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start, 493 (unsigned long)__hyp_text_end); 494 if (ret || is_kernel_in_hyp_mode()) 495 return ret; 496 ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start, 497 (unsigned long)__hyp_idmap_text_end); 498 return ret; 499 } 500 501 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 502 { 503 struct kretprobe_instance *ri = NULL; 504 struct hlist_head *head, empty_rp; 505 struct hlist_node *tmp; 506 unsigned long flags, orig_ret_address = 0; 507 unsigned long trampoline_address = 508 (unsigned long)&kretprobe_trampoline; 509 kprobe_opcode_t *correct_ret_addr = NULL; 510 511 INIT_HLIST_HEAD(&empty_rp); 512 kretprobe_hash_lock(current, &head, &flags); 513 514 /* 515 * It is possible to have multiple instances associated with a given 516 * task either because multiple functions in the call path have 517 * return probes installed on them, and/or more than one 518 * return probe was registered for a target function. 519 * 520 * We can handle this because: 521 * - instances are always pushed into the head of the list 522 * - when multiple return probes are registered for the same 523 * function, the (chronologically) first instance's ret_addr 524 * will be the real return address, and all the rest will 525 * point to kretprobe_trampoline. 526 */ 527 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 528 if (ri->task != current) 529 /* another task is sharing our hash bucket */ 530 continue; 531 532 orig_ret_address = (unsigned long)ri->ret_addr; 533 534 if (orig_ret_address != trampoline_address) 535 /* 536 * This is the real return address. Any other 537 * instances associated with this task are for 538 * other calls deeper on the call stack 539 */ 540 break; 541 } 542 543 kretprobe_assert(ri, orig_ret_address, trampoline_address); 544 545 correct_ret_addr = ri->ret_addr; 546 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 547 if (ri->task != current) 548 /* another task is sharing our hash bucket */ 549 continue; 550 551 orig_ret_address = (unsigned long)ri->ret_addr; 552 if (ri->rp && ri->rp->handler) { 553 __this_cpu_write(current_kprobe, &ri->rp->kp); 554 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 555 ri->ret_addr = correct_ret_addr; 556 ri->rp->handler(ri, regs); 557 __this_cpu_write(current_kprobe, NULL); 558 } 559 560 recycle_rp_inst(ri, &empty_rp); 561 562 if (orig_ret_address != trampoline_address) 563 /* 564 * This is the real return address. Any other 565 * instances associated with this task are for 566 * other calls deeper on the call stack 567 */ 568 break; 569 } 570 571 kretprobe_hash_unlock(current, &flags); 572 573 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 574 hlist_del(&ri->hlist); 575 kfree(ri); 576 } 577 return (void *)orig_ret_address; 578 } 579 580 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 581 struct pt_regs *regs) 582 { 583 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 584 585 /* replace return addr (x30) with trampoline */ 586 regs->regs[30] = (long)&kretprobe_trampoline; 587 } 588 589 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 590 { 591 return 0; 592 } 593 594 int __init arch_init_kprobes(void) 595 { 596 register_kernel_break_hook(&kprobes_break_hook); 597 register_kernel_step_hook(&kprobes_step_hook); 598 599 return 0; 600 } 601