xref: /openbmc/linux/arch/arm64/kernel/probes/kprobes.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/kernel/probes/kprobes.c
4  *
5  * Kprobes support for ARM64
6  *
7  * Copyright (C) 2013 Linaro Limited.
8  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9  */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/system_misc.h>
25 #include <asm/insn.h>
26 #include <linux/uaccess.h>
27 #include <asm/irq.h>
28 #include <asm/sections.h>
29 
30 #include "decode-insn.h"
31 
32 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
33 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
34 
35 static void __kprobes
36 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
37 
38 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
39 {
40 	void *addrs[1];
41 	u32 insns[1];
42 
43 	addrs[0] = addr;
44 	insns[0] = opcode;
45 
46 	return aarch64_insn_patch_text(addrs, insns, 1);
47 }
48 
49 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
50 {
51 	/* prepare insn slot */
52 	patch_text(p->ainsn.api.insn, p->opcode);
53 
54 	flush_icache_range((uintptr_t) (p->ainsn.api.insn),
55 			   (uintptr_t) (p->ainsn.api.insn) +
56 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
57 
58 	/*
59 	 * Needs restoring of return address after stepping xol.
60 	 */
61 	p->ainsn.api.restore = (unsigned long) p->addr +
62 	  sizeof(kprobe_opcode_t);
63 }
64 
65 static void __kprobes arch_prepare_simulate(struct kprobe *p)
66 {
67 	/* This instructions is not executed xol. No need to adjust the PC */
68 	p->ainsn.api.restore = 0;
69 }
70 
71 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
72 {
73 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
74 
75 	if (p->ainsn.api.handler)
76 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
77 
78 	/* single step simulated, now go for post processing */
79 	post_kprobe_handler(kcb, regs);
80 }
81 
82 int __kprobes arch_prepare_kprobe(struct kprobe *p)
83 {
84 	unsigned long probe_addr = (unsigned long)p->addr;
85 
86 	if (probe_addr & 0x3)
87 		return -EINVAL;
88 
89 	/* copy instruction */
90 	p->opcode = le32_to_cpu(*p->addr);
91 
92 	if (search_exception_tables(probe_addr))
93 		return -EINVAL;
94 
95 	/* decode instruction */
96 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
97 	case INSN_REJECTED:	/* insn not supported */
98 		return -EINVAL;
99 
100 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
101 		p->ainsn.api.insn = NULL;
102 		break;
103 
104 	case INSN_GOOD:	/* instruction uses slot */
105 		p->ainsn.api.insn = get_insn_slot();
106 		if (!p->ainsn.api.insn)
107 			return -ENOMEM;
108 		break;
109 	}
110 
111 	/* prepare the instruction */
112 	if (p->ainsn.api.insn)
113 		arch_prepare_ss_slot(p);
114 	else
115 		arch_prepare_simulate(p);
116 
117 	return 0;
118 }
119 
120 void *alloc_insn_page(void)
121 {
122 	void *page;
123 
124 	page = vmalloc_exec(PAGE_SIZE);
125 	if (page)
126 		set_memory_ro((unsigned long)page, 1);
127 
128 	return page;
129 }
130 
131 /* arm kprobe: install breakpoint in text */
132 void __kprobes arch_arm_kprobe(struct kprobe *p)
133 {
134 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
135 }
136 
137 /* disarm kprobe: remove breakpoint from text */
138 void __kprobes arch_disarm_kprobe(struct kprobe *p)
139 {
140 	patch_text(p->addr, p->opcode);
141 }
142 
143 void __kprobes arch_remove_kprobe(struct kprobe *p)
144 {
145 	if (p->ainsn.api.insn) {
146 		free_insn_slot(p->ainsn.api.insn, 0);
147 		p->ainsn.api.insn = NULL;
148 	}
149 }
150 
151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
152 {
153 	kcb->prev_kprobe.kp = kprobe_running();
154 	kcb->prev_kprobe.status = kcb->kprobe_status;
155 }
156 
157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
158 {
159 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
160 	kcb->kprobe_status = kcb->prev_kprobe.status;
161 }
162 
163 static void __kprobes set_current_kprobe(struct kprobe *p)
164 {
165 	__this_cpu_write(current_kprobe, p);
166 }
167 
168 /*
169  * When PSTATE.D is set (masked), then software step exceptions can not be
170  * generated.
171  * SPSR's D bit shows the value of PSTATE.D immediately before the
172  * exception was taken. PSTATE.D is set while entering into any exception
173  * mode, however software clears it for any normal (none-debug-exception)
174  * mode in the exception entry. Therefore, when we are entering into kprobe
175  * breakpoint handler from any normal mode then SPSR.D bit is already
176  * cleared, however it is set when we are entering from any debug exception
177  * mode.
178  * Since we always need to generate single step exception after a kprobe
179  * breakpoint exception therefore we need to clear it unconditionally, when
180  * we become sure that the current breakpoint exception is for kprobe.
181  */
182 static void __kprobes
183 spsr_set_debug_flag(struct pt_regs *regs, int mask)
184 {
185 	unsigned long spsr = regs->pstate;
186 
187 	if (mask)
188 		spsr |= PSR_D_BIT;
189 	else
190 		spsr &= ~PSR_D_BIT;
191 
192 	regs->pstate = spsr;
193 }
194 
195 /*
196  * Interrupts need to be disabled before single-step mode is set, and not
197  * reenabled until after single-step mode ends.
198  * Without disabling interrupt on local CPU, there is a chance of
199  * interrupt occurrence in the period of exception return and  start of
200  * out-of-line single-step, that result in wrongly single stepping
201  * into the interrupt handler.
202  */
203 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
204 						struct pt_regs *regs)
205 {
206 	kcb->saved_irqflag = regs->pstate;
207 	regs->pstate |= PSR_I_BIT;
208 }
209 
210 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
211 						struct pt_regs *regs)
212 {
213 	if (kcb->saved_irqflag & PSR_I_BIT)
214 		regs->pstate |= PSR_I_BIT;
215 	else
216 		regs->pstate &= ~PSR_I_BIT;
217 }
218 
219 static void __kprobes
220 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
221 {
222 	kcb->ss_ctx.ss_pending = true;
223 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
224 }
225 
226 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
227 {
228 	kcb->ss_ctx.ss_pending = false;
229 	kcb->ss_ctx.match_addr = 0;
230 }
231 
232 static void __kprobes setup_singlestep(struct kprobe *p,
233 				       struct pt_regs *regs,
234 				       struct kprobe_ctlblk *kcb, int reenter)
235 {
236 	unsigned long slot;
237 
238 	if (reenter) {
239 		save_previous_kprobe(kcb);
240 		set_current_kprobe(p);
241 		kcb->kprobe_status = KPROBE_REENTER;
242 	} else {
243 		kcb->kprobe_status = KPROBE_HIT_SS;
244 	}
245 
246 
247 	if (p->ainsn.api.insn) {
248 		/* prepare for single stepping */
249 		slot = (unsigned long)p->ainsn.api.insn;
250 
251 		set_ss_context(kcb, slot);	/* mark pending ss */
252 
253 		spsr_set_debug_flag(regs, 0);
254 
255 		/* IRQs and single stepping do not mix well. */
256 		kprobes_save_local_irqflag(kcb, regs);
257 		kernel_enable_single_step(regs);
258 		instruction_pointer_set(regs, slot);
259 	} else {
260 		/* insn simulation */
261 		arch_simulate_insn(p, regs);
262 	}
263 }
264 
265 static int __kprobes reenter_kprobe(struct kprobe *p,
266 				    struct pt_regs *regs,
267 				    struct kprobe_ctlblk *kcb)
268 {
269 	switch (kcb->kprobe_status) {
270 	case KPROBE_HIT_SSDONE:
271 	case KPROBE_HIT_ACTIVE:
272 		kprobes_inc_nmissed_count(p);
273 		setup_singlestep(p, regs, kcb, 1);
274 		break;
275 	case KPROBE_HIT_SS:
276 	case KPROBE_REENTER:
277 		pr_warn("Unrecoverable kprobe detected.\n");
278 		dump_kprobe(p);
279 		BUG();
280 		break;
281 	default:
282 		WARN_ON(1);
283 		return 0;
284 	}
285 
286 	return 1;
287 }
288 
289 static void __kprobes
290 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
291 {
292 	struct kprobe *cur = kprobe_running();
293 
294 	if (!cur)
295 		return;
296 
297 	/* return addr restore if non-branching insn */
298 	if (cur->ainsn.api.restore != 0)
299 		instruction_pointer_set(regs, cur->ainsn.api.restore);
300 
301 	/* restore back original saved kprobe variables and continue */
302 	if (kcb->kprobe_status == KPROBE_REENTER) {
303 		restore_previous_kprobe(kcb);
304 		return;
305 	}
306 	/* call post handler */
307 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
308 	if (cur->post_handler)	{
309 		/* post_handler can hit breakpoint and single step
310 		 * again, so we enable D-flag for recursive exception.
311 		 */
312 		cur->post_handler(cur, regs, 0);
313 	}
314 
315 	reset_current_kprobe();
316 }
317 
318 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
319 {
320 	struct kprobe *cur = kprobe_running();
321 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
322 
323 	switch (kcb->kprobe_status) {
324 	case KPROBE_HIT_SS:
325 	case KPROBE_REENTER:
326 		/*
327 		 * We are here because the instruction being single
328 		 * stepped caused a page fault. We reset the current
329 		 * kprobe and the ip points back to the probe address
330 		 * and allow the page fault handler to continue as a
331 		 * normal page fault.
332 		 */
333 		instruction_pointer_set(regs, (unsigned long) cur->addr);
334 		if (!instruction_pointer(regs))
335 			BUG();
336 
337 		kernel_disable_single_step();
338 
339 		if (kcb->kprobe_status == KPROBE_REENTER)
340 			restore_previous_kprobe(kcb);
341 		else
342 			reset_current_kprobe();
343 
344 		break;
345 	case KPROBE_HIT_ACTIVE:
346 	case KPROBE_HIT_SSDONE:
347 		/*
348 		 * We increment the nmissed count for accounting,
349 		 * we can also use npre/npostfault count for accounting
350 		 * these specific fault cases.
351 		 */
352 		kprobes_inc_nmissed_count(cur);
353 
354 		/*
355 		 * We come here because instructions in the pre/post
356 		 * handler caused the page_fault, this could happen
357 		 * if handler tries to access user space by
358 		 * copy_from_user(), get_user() etc. Let the
359 		 * user-specified handler try to fix it first.
360 		 */
361 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
362 			return 1;
363 
364 		/*
365 		 * In case the user-specified fault handler returned
366 		 * zero, try to fix up.
367 		 */
368 		if (fixup_exception(regs))
369 			return 1;
370 	}
371 	return 0;
372 }
373 
374 static void __kprobes kprobe_handler(struct pt_regs *regs)
375 {
376 	struct kprobe *p, *cur_kprobe;
377 	struct kprobe_ctlblk *kcb;
378 	unsigned long addr = instruction_pointer(regs);
379 
380 	kcb = get_kprobe_ctlblk();
381 	cur_kprobe = kprobe_running();
382 
383 	p = get_kprobe((kprobe_opcode_t *) addr);
384 
385 	if (p) {
386 		if (cur_kprobe) {
387 			if (reenter_kprobe(p, regs, kcb))
388 				return;
389 		} else {
390 			/* Probe hit */
391 			set_current_kprobe(p);
392 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
393 
394 			/*
395 			 * If we have no pre-handler or it returned 0, we
396 			 * continue with normal processing.  If we have a
397 			 * pre-handler and it returned non-zero, it will
398 			 * modify the execution path and no need to single
399 			 * stepping. Let's just reset current kprobe and exit.
400 			 *
401 			 * pre_handler can hit a breakpoint and can step thru
402 			 * before return, keep PSTATE D-flag enabled until
403 			 * pre_handler return back.
404 			 */
405 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
406 				setup_singlestep(p, regs, kcb, 0);
407 			} else
408 				reset_current_kprobe();
409 		}
410 	}
411 	/*
412 	 * The breakpoint instruction was removed right
413 	 * after we hit it.  Another cpu has removed
414 	 * either a probepoint or a debugger breakpoint
415 	 * at this address.  In either case, no further
416 	 * handling of this interrupt is appropriate.
417 	 * Return back to original instruction, and continue.
418 	 */
419 }
420 
421 static int __kprobes
422 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
423 {
424 	if ((kcb->ss_ctx.ss_pending)
425 	    && (kcb->ss_ctx.match_addr == addr)) {
426 		clear_ss_context(kcb);	/* clear pending ss */
427 		return DBG_HOOK_HANDLED;
428 	}
429 	/* not ours, kprobes should ignore it */
430 	return DBG_HOOK_ERROR;
431 }
432 
433 static int __kprobes
434 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
435 {
436 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
437 	int retval;
438 
439 	/* return error if this is not our step */
440 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
441 
442 	if (retval == DBG_HOOK_HANDLED) {
443 		kprobes_restore_local_irqflag(kcb, regs);
444 		kernel_disable_single_step();
445 
446 		post_kprobe_handler(kcb, regs);
447 	}
448 
449 	return retval;
450 }
451 
452 static struct step_hook kprobes_step_hook = {
453 	.fn = kprobe_single_step_handler,
454 };
455 
456 static int __kprobes
457 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
458 {
459 	kprobe_handler(regs);
460 	return DBG_HOOK_HANDLED;
461 }
462 
463 static struct break_hook kprobes_break_hook = {
464 	.imm = KPROBES_BRK_IMM,
465 	.fn = kprobe_breakpoint_handler,
466 };
467 
468 /*
469  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
470  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
471  */
472 int __init arch_populate_kprobe_blacklist(void)
473 {
474 	int ret;
475 
476 	ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
477 					(unsigned long)__entry_text_end);
478 	if (ret)
479 		return ret;
480 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
481 					(unsigned long)__irqentry_text_end);
482 	if (ret)
483 		return ret;
484 	ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
485 					(unsigned long)__exception_text_end);
486 	if (ret)
487 		return ret;
488 	ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
489 					(unsigned long)__idmap_text_end);
490 	if (ret)
491 		return ret;
492 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
493 					(unsigned long)__hyp_text_end);
494 	if (ret || is_kernel_in_hyp_mode())
495 		return ret;
496 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
497 					(unsigned long)__hyp_idmap_text_end);
498 	return ret;
499 }
500 
501 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
502 {
503 	struct kretprobe_instance *ri = NULL;
504 	struct hlist_head *head, empty_rp;
505 	struct hlist_node *tmp;
506 	unsigned long flags, orig_ret_address = 0;
507 	unsigned long trampoline_address =
508 		(unsigned long)&kretprobe_trampoline;
509 	kprobe_opcode_t *correct_ret_addr = NULL;
510 
511 	INIT_HLIST_HEAD(&empty_rp);
512 	kretprobe_hash_lock(current, &head, &flags);
513 
514 	/*
515 	 * It is possible to have multiple instances associated with a given
516 	 * task either because multiple functions in the call path have
517 	 * return probes installed on them, and/or more than one
518 	 * return probe was registered for a target function.
519 	 *
520 	 * We can handle this because:
521 	 *     - instances are always pushed into the head of the list
522 	 *     - when multiple return probes are registered for the same
523 	 *	 function, the (chronologically) first instance's ret_addr
524 	 *	 will be the real return address, and all the rest will
525 	 *	 point to kretprobe_trampoline.
526 	 */
527 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
528 		if (ri->task != current)
529 			/* another task is sharing our hash bucket */
530 			continue;
531 
532 		orig_ret_address = (unsigned long)ri->ret_addr;
533 
534 		if (orig_ret_address != trampoline_address)
535 			/*
536 			 * This is the real return address. Any other
537 			 * instances associated with this task are for
538 			 * other calls deeper on the call stack
539 			 */
540 			break;
541 	}
542 
543 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
544 
545 	correct_ret_addr = ri->ret_addr;
546 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
547 		if (ri->task != current)
548 			/* another task is sharing our hash bucket */
549 			continue;
550 
551 		orig_ret_address = (unsigned long)ri->ret_addr;
552 		if (ri->rp && ri->rp->handler) {
553 			__this_cpu_write(current_kprobe, &ri->rp->kp);
554 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
555 			ri->ret_addr = correct_ret_addr;
556 			ri->rp->handler(ri, regs);
557 			__this_cpu_write(current_kprobe, NULL);
558 		}
559 
560 		recycle_rp_inst(ri, &empty_rp);
561 
562 		if (orig_ret_address != trampoline_address)
563 			/*
564 			 * This is the real return address. Any other
565 			 * instances associated with this task are for
566 			 * other calls deeper on the call stack
567 			 */
568 			break;
569 	}
570 
571 	kretprobe_hash_unlock(current, &flags);
572 
573 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
574 		hlist_del(&ri->hlist);
575 		kfree(ri);
576 	}
577 	return (void *)orig_ret_address;
578 }
579 
580 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
581 				      struct pt_regs *regs)
582 {
583 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
584 
585 	/* replace return addr (x30) with trampoline */
586 	regs->regs[30] = (long)&kretprobe_trampoline;
587 }
588 
589 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
590 {
591 	return 0;
592 }
593 
594 int __init arch_init_kprobes(void)
595 {
596 	register_kernel_break_hook(&kprobes_break_hook);
597 	register_kernel_step_hook(&kprobes_step_hook);
598 
599 	return 0;
600 }
601