1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/kernel/probes/kprobes.c 4 * 5 * Kprobes support for ARM64 6 * 7 * Copyright (C) 2013 Linaro Limited. 8 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 9 */ 10 #include <linux/kasan.h> 11 #include <linux/kernel.h> 12 #include <linux/kprobes.h> 13 #include <linux/extable.h> 14 #include <linux/slab.h> 15 #include <linux/stop_machine.h> 16 #include <linux/sched/debug.h> 17 #include <linux/set_memory.h> 18 #include <linux/stringify.h> 19 #include <linux/vmalloc.h> 20 #include <asm/traps.h> 21 #include <asm/ptrace.h> 22 #include <asm/cacheflush.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/daifflags.h> 25 #include <asm/system_misc.h> 26 #include <asm/insn.h> 27 #include <linux/uaccess.h> 28 #include <asm/irq.h> 29 #include <asm/sections.h> 30 31 #include "decode-insn.h" 32 33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 35 36 static void __kprobes 37 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 38 39 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 40 { 41 void *addrs[1]; 42 u32 insns[1]; 43 44 addrs[0] = addr; 45 insns[0] = opcode; 46 47 return aarch64_insn_patch_text(addrs, insns, 1); 48 } 49 50 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 51 { 52 /* prepare insn slot */ 53 patch_text(p->ainsn.api.insn, p->opcode); 54 55 flush_icache_range((uintptr_t) (p->ainsn.api.insn), 56 (uintptr_t) (p->ainsn.api.insn) + 57 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 58 59 /* 60 * Needs restoring of return address after stepping xol. 61 */ 62 p->ainsn.api.restore = (unsigned long) p->addr + 63 sizeof(kprobe_opcode_t); 64 } 65 66 static void __kprobes arch_prepare_simulate(struct kprobe *p) 67 { 68 /* This instructions is not executed xol. No need to adjust the PC */ 69 p->ainsn.api.restore = 0; 70 } 71 72 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 73 { 74 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 75 76 if (p->ainsn.api.handler) 77 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); 78 79 /* single step simulated, now go for post processing */ 80 post_kprobe_handler(kcb, regs); 81 } 82 83 int __kprobes arch_prepare_kprobe(struct kprobe *p) 84 { 85 unsigned long probe_addr = (unsigned long)p->addr; 86 87 if (probe_addr & 0x3) 88 return -EINVAL; 89 90 /* copy instruction */ 91 p->opcode = le32_to_cpu(*p->addr); 92 93 if (search_exception_tables(probe_addr)) 94 return -EINVAL; 95 96 /* decode instruction */ 97 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 98 case INSN_REJECTED: /* insn not supported */ 99 return -EINVAL; 100 101 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 102 p->ainsn.api.insn = NULL; 103 break; 104 105 case INSN_GOOD: /* instruction uses slot */ 106 p->ainsn.api.insn = get_insn_slot(); 107 if (!p->ainsn.api.insn) 108 return -ENOMEM; 109 break; 110 } 111 112 /* prepare the instruction */ 113 if (p->ainsn.api.insn) 114 arch_prepare_ss_slot(p); 115 else 116 arch_prepare_simulate(p); 117 118 return 0; 119 } 120 121 void *alloc_insn_page(void) 122 { 123 return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END, 124 GFP_KERNEL, PAGE_KERNEL_ROX, VM_FLUSH_RESET_PERMS, 125 NUMA_NO_NODE, __builtin_return_address(0)); 126 } 127 128 /* arm kprobe: install breakpoint in text */ 129 void __kprobes arch_arm_kprobe(struct kprobe *p) 130 { 131 patch_text(p->addr, BRK64_OPCODE_KPROBES); 132 } 133 134 /* disarm kprobe: remove breakpoint from text */ 135 void __kprobes arch_disarm_kprobe(struct kprobe *p) 136 { 137 patch_text(p->addr, p->opcode); 138 } 139 140 void __kprobes arch_remove_kprobe(struct kprobe *p) 141 { 142 if (p->ainsn.api.insn) { 143 free_insn_slot(p->ainsn.api.insn, 0); 144 p->ainsn.api.insn = NULL; 145 } 146 } 147 148 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 149 { 150 kcb->prev_kprobe.kp = kprobe_running(); 151 kcb->prev_kprobe.status = kcb->kprobe_status; 152 } 153 154 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 155 { 156 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 157 kcb->kprobe_status = kcb->prev_kprobe.status; 158 } 159 160 static void __kprobes set_current_kprobe(struct kprobe *p) 161 { 162 __this_cpu_write(current_kprobe, p); 163 } 164 165 /* 166 * Interrupts need to be disabled before single-step mode is set, and not 167 * reenabled until after single-step mode ends. 168 * Without disabling interrupt on local CPU, there is a chance of 169 * interrupt occurrence in the period of exception return and start of 170 * out-of-line single-step, that result in wrongly single stepping 171 * into the interrupt handler. 172 */ 173 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 174 struct pt_regs *regs) 175 { 176 kcb->saved_irqflag = regs->pstate & DAIF_MASK; 177 regs->pstate |= PSR_I_BIT; 178 /* Unmask PSTATE.D for enabling software step exceptions. */ 179 regs->pstate &= ~PSR_D_BIT; 180 } 181 182 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 183 struct pt_regs *regs) 184 { 185 regs->pstate &= ~DAIF_MASK; 186 regs->pstate |= kcb->saved_irqflag; 187 } 188 189 static void __kprobes 190 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 191 { 192 kcb->ss_ctx.ss_pending = true; 193 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 194 } 195 196 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 197 { 198 kcb->ss_ctx.ss_pending = false; 199 kcb->ss_ctx.match_addr = 0; 200 } 201 202 static void __kprobes setup_singlestep(struct kprobe *p, 203 struct pt_regs *regs, 204 struct kprobe_ctlblk *kcb, int reenter) 205 { 206 unsigned long slot; 207 208 if (reenter) { 209 save_previous_kprobe(kcb); 210 set_current_kprobe(p); 211 kcb->kprobe_status = KPROBE_REENTER; 212 } else { 213 kcb->kprobe_status = KPROBE_HIT_SS; 214 } 215 216 217 if (p->ainsn.api.insn) { 218 /* prepare for single stepping */ 219 slot = (unsigned long)p->ainsn.api.insn; 220 221 set_ss_context(kcb, slot); /* mark pending ss */ 222 223 /* IRQs and single stepping do not mix well. */ 224 kprobes_save_local_irqflag(kcb, regs); 225 kernel_enable_single_step(regs); 226 instruction_pointer_set(regs, slot); 227 } else { 228 /* insn simulation */ 229 arch_simulate_insn(p, regs); 230 } 231 } 232 233 static int __kprobes reenter_kprobe(struct kprobe *p, 234 struct pt_regs *regs, 235 struct kprobe_ctlblk *kcb) 236 { 237 switch (kcb->kprobe_status) { 238 case KPROBE_HIT_SSDONE: 239 case KPROBE_HIT_ACTIVE: 240 kprobes_inc_nmissed_count(p); 241 setup_singlestep(p, regs, kcb, 1); 242 break; 243 case KPROBE_HIT_SS: 244 case KPROBE_REENTER: 245 pr_warn("Unrecoverable kprobe detected.\n"); 246 dump_kprobe(p); 247 BUG(); 248 break; 249 default: 250 WARN_ON(1); 251 return 0; 252 } 253 254 return 1; 255 } 256 257 static void __kprobes 258 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 259 { 260 struct kprobe *cur = kprobe_running(); 261 262 if (!cur) 263 return; 264 265 /* return addr restore if non-branching insn */ 266 if (cur->ainsn.api.restore != 0) 267 instruction_pointer_set(regs, cur->ainsn.api.restore); 268 269 /* restore back original saved kprobe variables and continue */ 270 if (kcb->kprobe_status == KPROBE_REENTER) { 271 restore_previous_kprobe(kcb); 272 return; 273 } 274 /* call post handler */ 275 kcb->kprobe_status = KPROBE_HIT_SSDONE; 276 if (cur->post_handler) { 277 /* post_handler can hit breakpoint and single step 278 * again, so we enable D-flag for recursive exception. 279 */ 280 cur->post_handler(cur, regs, 0); 281 } 282 283 reset_current_kprobe(); 284 } 285 286 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 287 { 288 struct kprobe *cur = kprobe_running(); 289 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 290 291 switch (kcb->kprobe_status) { 292 case KPROBE_HIT_SS: 293 case KPROBE_REENTER: 294 /* 295 * We are here because the instruction being single 296 * stepped caused a page fault. We reset the current 297 * kprobe and the ip points back to the probe address 298 * and allow the page fault handler to continue as a 299 * normal page fault. 300 */ 301 instruction_pointer_set(regs, (unsigned long) cur->addr); 302 if (!instruction_pointer(regs)) 303 BUG(); 304 305 kernel_disable_single_step(); 306 307 if (kcb->kprobe_status == KPROBE_REENTER) 308 restore_previous_kprobe(kcb); 309 else 310 reset_current_kprobe(); 311 312 break; 313 case KPROBE_HIT_ACTIVE: 314 case KPROBE_HIT_SSDONE: 315 /* 316 * We increment the nmissed count for accounting, 317 * we can also use npre/npostfault count for accounting 318 * these specific fault cases. 319 */ 320 kprobes_inc_nmissed_count(cur); 321 322 /* 323 * We come here because instructions in the pre/post 324 * handler caused the page_fault, this could happen 325 * if handler tries to access user space by 326 * copy_from_user(), get_user() etc. Let the 327 * user-specified handler try to fix it first. 328 */ 329 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 330 return 1; 331 332 /* 333 * In case the user-specified fault handler returned 334 * zero, try to fix up. 335 */ 336 if (fixup_exception(regs)) 337 return 1; 338 } 339 return 0; 340 } 341 342 static void __kprobes kprobe_handler(struct pt_regs *regs) 343 { 344 struct kprobe *p, *cur_kprobe; 345 struct kprobe_ctlblk *kcb; 346 unsigned long addr = instruction_pointer(regs); 347 348 kcb = get_kprobe_ctlblk(); 349 cur_kprobe = kprobe_running(); 350 351 p = get_kprobe((kprobe_opcode_t *) addr); 352 353 if (p) { 354 if (cur_kprobe) { 355 if (reenter_kprobe(p, regs, kcb)) 356 return; 357 } else { 358 /* Probe hit */ 359 set_current_kprobe(p); 360 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 361 362 /* 363 * If we have no pre-handler or it returned 0, we 364 * continue with normal processing. If we have a 365 * pre-handler and it returned non-zero, it will 366 * modify the execution path and no need to single 367 * stepping. Let's just reset current kprobe and exit. 368 * 369 * pre_handler can hit a breakpoint and can step thru 370 * before return, keep PSTATE D-flag enabled until 371 * pre_handler return back. 372 */ 373 if (!p->pre_handler || !p->pre_handler(p, regs)) { 374 setup_singlestep(p, regs, kcb, 0); 375 } else 376 reset_current_kprobe(); 377 } 378 } 379 /* 380 * The breakpoint instruction was removed right 381 * after we hit it. Another cpu has removed 382 * either a probepoint or a debugger breakpoint 383 * at this address. In either case, no further 384 * handling of this interrupt is appropriate. 385 * Return back to original instruction, and continue. 386 */ 387 } 388 389 static int __kprobes 390 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 391 { 392 if ((kcb->ss_ctx.ss_pending) 393 && (kcb->ss_ctx.match_addr == addr)) { 394 clear_ss_context(kcb); /* clear pending ss */ 395 return DBG_HOOK_HANDLED; 396 } 397 /* not ours, kprobes should ignore it */ 398 return DBG_HOOK_ERROR; 399 } 400 401 static int __kprobes 402 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 403 { 404 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 405 int retval; 406 407 /* return error if this is not our step */ 408 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 409 410 if (retval == DBG_HOOK_HANDLED) { 411 kprobes_restore_local_irqflag(kcb, regs); 412 kernel_disable_single_step(); 413 414 post_kprobe_handler(kcb, regs); 415 } 416 417 return retval; 418 } 419 420 static struct step_hook kprobes_step_hook = { 421 .fn = kprobe_single_step_handler, 422 }; 423 424 static int __kprobes 425 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 426 { 427 kprobe_handler(regs); 428 return DBG_HOOK_HANDLED; 429 } 430 431 static struct break_hook kprobes_break_hook = { 432 .imm = KPROBES_BRK_IMM, 433 .fn = kprobe_breakpoint_handler, 434 }; 435 436 /* 437 * Provide a blacklist of symbols identifying ranges which cannot be kprobed. 438 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). 439 */ 440 int __init arch_populate_kprobe_blacklist(void) 441 { 442 int ret; 443 444 ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start, 445 (unsigned long)__entry_text_end); 446 if (ret) 447 return ret; 448 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 449 (unsigned long)__irqentry_text_end); 450 if (ret) 451 return ret; 452 ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start, 453 (unsigned long)__idmap_text_end); 454 if (ret) 455 return ret; 456 ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start, 457 (unsigned long)__hyp_text_end); 458 if (ret || is_kernel_in_hyp_mode()) 459 return ret; 460 ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start, 461 (unsigned long)__hyp_idmap_text_end); 462 return ret; 463 } 464 465 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 466 { 467 struct kretprobe_instance *ri = NULL; 468 struct hlist_head *head, empty_rp; 469 struct hlist_node *tmp; 470 unsigned long flags, orig_ret_address = 0; 471 unsigned long trampoline_address = 472 (unsigned long)&kretprobe_trampoline; 473 kprobe_opcode_t *correct_ret_addr = NULL; 474 475 INIT_HLIST_HEAD(&empty_rp); 476 kretprobe_hash_lock(current, &head, &flags); 477 478 /* 479 * It is possible to have multiple instances associated with a given 480 * task either because multiple functions in the call path have 481 * return probes installed on them, and/or more than one 482 * return probe was registered for a target function. 483 * 484 * We can handle this because: 485 * - instances are always pushed into the head of the list 486 * - when multiple return probes are registered for the same 487 * function, the (chronologically) first instance's ret_addr 488 * will be the real return address, and all the rest will 489 * point to kretprobe_trampoline. 490 */ 491 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 492 if (ri->task != current) 493 /* another task is sharing our hash bucket */ 494 continue; 495 496 orig_ret_address = (unsigned long)ri->ret_addr; 497 498 if (orig_ret_address != trampoline_address) 499 /* 500 * This is the real return address. Any other 501 * instances associated with this task are for 502 * other calls deeper on the call stack 503 */ 504 break; 505 } 506 507 kretprobe_assert(ri, orig_ret_address, trampoline_address); 508 509 correct_ret_addr = ri->ret_addr; 510 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 511 if (ri->task != current) 512 /* another task is sharing our hash bucket */ 513 continue; 514 515 orig_ret_address = (unsigned long)ri->ret_addr; 516 if (ri->rp && ri->rp->handler) { 517 __this_cpu_write(current_kprobe, &ri->rp->kp); 518 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 519 ri->ret_addr = correct_ret_addr; 520 ri->rp->handler(ri, regs); 521 __this_cpu_write(current_kprobe, NULL); 522 } 523 524 recycle_rp_inst(ri, &empty_rp); 525 526 if (orig_ret_address != trampoline_address) 527 /* 528 * This is the real return address. Any other 529 * instances associated with this task are for 530 * other calls deeper on the call stack 531 */ 532 break; 533 } 534 535 kretprobe_hash_unlock(current, &flags); 536 537 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 538 hlist_del(&ri->hlist); 539 kfree(ri); 540 } 541 return (void *)orig_ret_address; 542 } 543 544 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 545 struct pt_regs *regs) 546 { 547 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 548 549 /* replace return addr (x30) with trampoline */ 550 regs->regs[30] = (long)&kretprobe_trampoline; 551 } 552 553 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 554 { 555 return 0; 556 } 557 558 int __init arch_init_kprobes(void) 559 { 560 register_kernel_break_hook(&kprobes_break_hook); 561 register_kernel_step_hook(&kprobes_step_hook); 562 563 return 0; 564 } 565