xref: /openbmc/linux/arch/arm64/kernel/mte.c (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 			       bool check_swap, bool pte_is_tagged)
40 {
41 	if (check_swap && is_swap_pte(old_pte)) {
42 		swp_entry_t entry = pte_to_swp_entry(old_pte);
43 
44 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
45 			return;
46 	}
47 
48 	if (!pte_is_tagged)
49 		return;
50 
51 	page_kasan_tag_reset(page);
52 	/*
53 	 * We need smp_wmb() in between setting the flags and clearing the
54 	 * tags because if another thread reads page->flags and builds a
55 	 * tagged address out of it, there is an actual dependency to the
56 	 * memory access, but on the current thread we do not guarantee that
57 	 * the new page->flags are visible before the tags were updated.
58 	 */
59 	smp_wmb();
60 	mte_clear_page_tags(page_address(page));
61 }
62 
63 void mte_sync_tags(pte_t old_pte, pte_t pte)
64 {
65 	struct page *page = pte_page(pte);
66 	long i, nr_pages = compound_nr(page);
67 	bool check_swap = nr_pages == 1;
68 	bool pte_is_tagged = pte_tagged(pte);
69 
70 	/* Early out if there's nothing to do */
71 	if (!check_swap && !pte_is_tagged)
72 		return;
73 
74 	/* if PG_mte_tagged is set, tags have already been initialised */
75 	for (i = 0; i < nr_pages; i++, page++) {
76 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
77 			mte_sync_page_tags(page, old_pte, check_swap,
78 					   pte_is_tagged);
79 	}
80 
81 	/* ensure the tags are visible before the PTE is set */
82 	smp_wmb();
83 }
84 
85 int memcmp_pages(struct page *page1, struct page *page2)
86 {
87 	char *addr1, *addr2;
88 	int ret;
89 
90 	addr1 = page_address(page1);
91 	addr2 = page_address(page2);
92 	ret = memcmp(addr1, addr2, PAGE_SIZE);
93 
94 	if (!system_supports_mte() || ret)
95 		return ret;
96 
97 	/*
98 	 * If the page content is identical but at least one of the pages is
99 	 * tagged, return non-zero to avoid KSM merging. If only one of the
100 	 * pages is tagged, set_pte_at() may zero or change the tags of the
101 	 * other page via mte_sync_tags().
102 	 */
103 	if (test_bit(PG_mte_tagged, &page1->flags) ||
104 	    test_bit(PG_mte_tagged, &page2->flags))
105 		return addr1 != addr2;
106 
107 	return ret;
108 }
109 
110 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
111 {
112 	/* Enable MTE Sync Mode for EL1. */
113 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
114 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
115 	isb();
116 
117 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
118 }
119 
120 #ifdef CONFIG_KASAN_HW_TAGS
121 void mte_enable_kernel_sync(void)
122 {
123 	/*
124 	 * Make sure we enter this function when no PE has set
125 	 * async mode previously.
126 	 */
127 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
128 			"MTE async mode enabled system wide!");
129 
130 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
131 }
132 
133 void mte_enable_kernel_async(void)
134 {
135 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
136 
137 	/*
138 	 * MTE async mode is set system wide by the first PE that
139 	 * executes this function.
140 	 *
141 	 * Note: If in future KASAN acquires a runtime switching
142 	 * mode in between sync and async, this strategy needs
143 	 * to be reviewed.
144 	 */
145 	if (!system_uses_mte_async_or_asymm_mode())
146 		static_branch_enable(&mte_async_or_asymm_mode);
147 }
148 
149 void mte_enable_kernel_asymm(void)
150 {
151 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
152 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
153 
154 		/*
155 		 * MTE asymm mode behaves as async mode for store
156 		 * operations. The mode is set system wide by the
157 		 * first PE that executes this function.
158 		 *
159 		 * Note: If in future KASAN acquires a runtime switching
160 		 * mode in between sync and async, this strategy needs
161 		 * to be reviewed.
162 		 */
163 		if (!system_uses_mte_async_or_asymm_mode())
164 			static_branch_enable(&mte_async_or_asymm_mode);
165 	} else {
166 		/*
167 		 * If the CPU does not support MTE asymmetric mode the
168 		 * kernel falls back on synchronous mode which is the
169 		 * default for kasan=on.
170 		 */
171 		mte_enable_kernel_sync();
172 	}
173 }
174 #endif
175 
176 #ifdef CONFIG_KASAN_HW_TAGS
177 void mte_check_tfsr_el1(void)
178 {
179 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
180 
181 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
182 		/*
183 		 * Note: isb() is not required after this direct write
184 		 * because there is no indirect read subsequent to it
185 		 * (per ARM DDI 0487F.c table D13-1).
186 		 */
187 		write_sysreg_s(0, SYS_TFSR_EL1);
188 
189 		kasan_report_async();
190 	}
191 }
192 #endif
193 
194 /*
195  * This is where we actually resolve the system and process MTE mode
196  * configuration into an actual value in SCTLR_EL1 that affects
197  * userspace.
198  */
199 static void mte_update_sctlr_user(struct task_struct *task)
200 {
201 	/*
202 	 * This must be called with preemption disabled and can only be called
203 	 * on the current or next task since the CPU must match where the thread
204 	 * is going to run. The caller is responsible for calling
205 	 * update_sctlr_el1() later in the same preemption disabled block.
206 	 */
207 	unsigned long sctlr = task->thread.sctlr_user;
208 	unsigned long mte_ctrl = task->thread.mte_ctrl;
209 	unsigned long pref, resolved_mte_tcf;
210 
211 	pref = __this_cpu_read(mte_tcf_preferred);
212 	/*
213 	 * If there is no overlap between the system preferred and
214 	 * program requested values go with what was requested.
215 	 */
216 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
217 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
218 	/*
219 	 * Pick an actual setting. The order in which we check for
220 	 * set bits and map into register values determines our
221 	 * default order.
222 	 */
223 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
224 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
225 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
226 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
227 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
228 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
229 	task->thread.sctlr_user = sctlr;
230 }
231 
232 static void mte_update_gcr_excl(struct task_struct *task)
233 {
234 	/*
235 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
236 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
237 	 */
238 	if (kasan_hw_tags_enabled())
239 		return;
240 
241 	write_sysreg_s(
242 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
243 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
244 		SYS_GCR_EL1);
245 }
246 
247 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
248 				 __le32 *updptr, int nr_inst)
249 {
250 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
251 
252 	if (kasan_hw_tags_enabled())
253 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
254 }
255 
256 void mte_thread_init_user(void)
257 {
258 	if (!system_supports_mte())
259 		return;
260 
261 	/* clear any pending asynchronous tag fault */
262 	dsb(ish);
263 	write_sysreg_s(0, SYS_TFSRE0_EL1);
264 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
265 	/* disable tag checking and reset tag generation mask */
266 	set_mte_ctrl(current, 0);
267 }
268 
269 void mte_thread_switch(struct task_struct *next)
270 {
271 	if (!system_supports_mte())
272 		return;
273 
274 	mte_update_sctlr_user(next);
275 	mte_update_gcr_excl(next);
276 
277 	/* TCO may not have been disabled on exception entry for the current task. */
278 	mte_disable_tco_entry(next);
279 
280 	/*
281 	 * Check if an async tag exception occurred at EL1.
282 	 *
283 	 * Note: On the context switch path we rely on the dsb() present
284 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
285 	 * are synchronized before this point.
286 	 */
287 	isb();
288 	mte_check_tfsr_el1();
289 }
290 
291 void mte_suspend_enter(void)
292 {
293 	if (!system_supports_mte())
294 		return;
295 
296 	/*
297 	 * The barriers are required to guarantee that the indirect writes
298 	 * to TFSR_EL1 are synchronized before we report the state.
299 	 */
300 	dsb(nsh);
301 	isb();
302 
303 	/* Report SYS_TFSR_EL1 before suspend entry */
304 	mte_check_tfsr_el1();
305 }
306 
307 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
308 {
309 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
310 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
311 
312 	if (!system_supports_mte())
313 		return 0;
314 
315 	if (arg & PR_MTE_TCF_ASYNC)
316 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
317 	if (arg & PR_MTE_TCF_SYNC)
318 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
319 
320 	/*
321 	 * If the system supports it and both sync and async modes are
322 	 * specified then implicitly enable asymmetric mode.
323 	 * Userspace could see a mix of both sync and async anyway due
324 	 * to differing or changing defaults on CPUs.
325 	 */
326 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
327 	    (arg & PR_MTE_TCF_ASYNC) &&
328 	    (arg & PR_MTE_TCF_SYNC))
329 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
330 
331 	task->thread.mte_ctrl = mte_ctrl;
332 	if (task == current) {
333 		preempt_disable();
334 		mte_update_sctlr_user(task);
335 		mte_update_gcr_excl(task);
336 		update_sctlr_el1(task->thread.sctlr_user);
337 		preempt_enable();
338 	}
339 
340 	return 0;
341 }
342 
343 long get_mte_ctrl(struct task_struct *task)
344 {
345 	unsigned long ret;
346 	u64 mte_ctrl = task->thread.mte_ctrl;
347 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
348 		   SYS_GCR_EL1_EXCL_MASK;
349 
350 	if (!system_supports_mte())
351 		return 0;
352 
353 	ret = incl << PR_MTE_TAG_SHIFT;
354 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
355 		ret |= PR_MTE_TCF_ASYNC;
356 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
357 		ret |= PR_MTE_TCF_SYNC;
358 
359 	return ret;
360 }
361 
362 /*
363  * Access MTE tags in another process' address space as given in mm. Update
364  * the number of tags copied. Return 0 if any tags copied, error otherwise.
365  * Inspired by __access_remote_vm().
366  */
367 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
368 				struct iovec *kiov, unsigned int gup_flags)
369 {
370 	struct vm_area_struct *vma;
371 	void __user *buf = kiov->iov_base;
372 	size_t len = kiov->iov_len;
373 	int ret;
374 	int write = gup_flags & FOLL_WRITE;
375 
376 	if (!access_ok(buf, len))
377 		return -EFAULT;
378 
379 	if (mmap_read_lock_killable(mm))
380 		return -EIO;
381 
382 	while (len) {
383 		unsigned long tags, offset;
384 		void *maddr;
385 		struct page *page = NULL;
386 
387 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
388 					    &vma, NULL);
389 		if (ret <= 0)
390 			break;
391 
392 		/*
393 		 * Only copy tags if the page has been mapped as PROT_MTE
394 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
395 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
396 		 * would cause the existing tags to be cleared if the page
397 		 * was never mapped with PROT_MTE.
398 		 */
399 		if (!(vma->vm_flags & VM_MTE)) {
400 			ret = -EOPNOTSUPP;
401 			put_page(page);
402 			break;
403 		}
404 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
405 
406 		/* limit access to the end of the page */
407 		offset = offset_in_page(addr);
408 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
409 
410 		maddr = page_address(page);
411 		if (write) {
412 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
413 			set_page_dirty_lock(page);
414 		} else {
415 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
416 		}
417 		put_page(page);
418 
419 		/* error accessing the tracer's buffer */
420 		if (!tags)
421 			break;
422 
423 		len -= tags;
424 		buf += tags;
425 		addr += tags * MTE_GRANULE_SIZE;
426 	}
427 	mmap_read_unlock(mm);
428 
429 	/* return an error if no tags copied */
430 	kiov->iov_len = buf - kiov->iov_base;
431 	if (!kiov->iov_len) {
432 		/* check for error accessing the tracee's address space */
433 		if (ret <= 0)
434 			return -EIO;
435 		else
436 			return -EFAULT;
437 	}
438 
439 	return 0;
440 }
441 
442 /*
443  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
444  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
445  */
446 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
447 			      struct iovec *kiov, unsigned int gup_flags)
448 {
449 	struct mm_struct *mm;
450 	int ret;
451 
452 	mm = get_task_mm(tsk);
453 	if (!mm)
454 		return -EPERM;
455 
456 	if (!tsk->ptrace || (current != tsk->parent) ||
457 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
458 	     !ptracer_capable(tsk, mm->user_ns))) {
459 		mmput(mm);
460 		return -EPERM;
461 	}
462 
463 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
464 	mmput(mm);
465 
466 	return ret;
467 }
468 
469 int mte_ptrace_copy_tags(struct task_struct *child, long request,
470 			 unsigned long addr, unsigned long data)
471 {
472 	int ret;
473 	struct iovec kiov;
474 	struct iovec __user *uiov = (void __user *)data;
475 	unsigned int gup_flags = FOLL_FORCE;
476 
477 	if (!system_supports_mte())
478 		return -EIO;
479 
480 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
481 	    get_user(kiov.iov_len, &uiov->iov_len))
482 		return -EFAULT;
483 
484 	if (request == PTRACE_POKEMTETAGS)
485 		gup_flags |= FOLL_WRITE;
486 
487 	/* align addr to the MTE tag granule */
488 	addr &= MTE_GRANULE_MASK;
489 
490 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
491 	if (!ret)
492 		ret = put_user(kiov.iov_len, &uiov->iov_len);
493 
494 	return ret;
495 }
496 
497 static ssize_t mte_tcf_preferred_show(struct device *dev,
498 				      struct device_attribute *attr, char *buf)
499 {
500 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
501 	case MTE_CTRL_TCF_ASYNC:
502 		return sysfs_emit(buf, "async\n");
503 	case MTE_CTRL_TCF_SYNC:
504 		return sysfs_emit(buf, "sync\n");
505 	case MTE_CTRL_TCF_ASYMM:
506 		return sysfs_emit(buf, "asymm\n");
507 	default:
508 		return sysfs_emit(buf, "???\n");
509 	}
510 }
511 
512 static ssize_t mte_tcf_preferred_store(struct device *dev,
513 				       struct device_attribute *attr,
514 				       const char *buf, size_t count)
515 {
516 	u64 tcf;
517 
518 	if (sysfs_streq(buf, "async"))
519 		tcf = MTE_CTRL_TCF_ASYNC;
520 	else if (sysfs_streq(buf, "sync"))
521 		tcf = MTE_CTRL_TCF_SYNC;
522 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
523 		tcf = MTE_CTRL_TCF_ASYMM;
524 	else
525 		return -EINVAL;
526 
527 	device_lock(dev);
528 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
529 	device_unlock(dev);
530 
531 	return count;
532 }
533 static DEVICE_ATTR_RW(mte_tcf_preferred);
534 
535 static int register_mte_tcf_preferred_sysctl(void)
536 {
537 	unsigned int cpu;
538 
539 	if (!system_supports_mte())
540 		return 0;
541 
542 	for_each_possible_cpu(cpu) {
543 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
544 		device_create_file(get_cpu_device(cpu),
545 				   &dev_attr_mte_tcf_preferred);
546 	}
547 
548 	return 0;
549 }
550 subsys_initcall(register_mte_tcf_preferred_sysctl);
551 
552 /*
553  * Return 0 on success, the number of bytes not probed otherwise.
554  */
555 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
556 {
557 	const char __user *end = uaddr + size;
558 	int err = 0;
559 	char val;
560 
561 	__raw_get_user(val, uaddr, err);
562 	if (err)
563 		return size;
564 
565 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
566 	while (uaddr < end) {
567 		/*
568 		 * A read is sufficient for mte, the caller should have probed
569 		 * for the pte write permission if required.
570 		 */
571 		__raw_get_user(val, uaddr, err);
572 		if (err)
573 			return end - uaddr;
574 		uaddr += MTE_GRANULE_SIZE;
575 	}
576 	(void)val;
577 
578 	return 0;
579 }
580