xref: /openbmc/linux/arch/arm64/kernel/mte.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uio.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/mte.h>
23 #include <asm/ptrace.h>
24 #include <asm/sysreg.h>
25 
26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
27 
28 #ifdef CONFIG_KASAN_HW_TAGS
29 /*
30  * The asynchronous and asymmetric MTE modes have the same behavior for
31  * store operations. This flag is set when either of these modes is enabled.
32  */
33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
35 #endif
36 
37 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
38 			       bool check_swap, bool pte_is_tagged)
39 {
40 	if (check_swap && is_swap_pte(old_pte)) {
41 		swp_entry_t entry = pte_to_swp_entry(old_pte);
42 
43 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
44 			return;
45 	}
46 
47 	if (!pte_is_tagged)
48 		return;
49 
50 	page_kasan_tag_reset(page);
51 	/*
52 	 * We need smp_wmb() in between setting the flags and clearing the
53 	 * tags because if another thread reads page->flags and builds a
54 	 * tagged address out of it, there is an actual dependency to the
55 	 * memory access, but on the current thread we do not guarantee that
56 	 * the new page->flags are visible before the tags were updated.
57 	 */
58 	smp_wmb();
59 	mte_clear_page_tags(page_address(page));
60 }
61 
62 void mte_sync_tags(pte_t old_pte, pte_t pte)
63 {
64 	struct page *page = pte_page(pte);
65 	long i, nr_pages = compound_nr(page);
66 	bool check_swap = nr_pages == 1;
67 	bool pte_is_tagged = pte_tagged(pte);
68 
69 	/* Early out if there's nothing to do */
70 	if (!check_swap && !pte_is_tagged)
71 		return;
72 
73 	/* if PG_mte_tagged is set, tags have already been initialised */
74 	for (i = 0; i < nr_pages; i++, page++) {
75 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
76 			mte_sync_page_tags(page, old_pte, check_swap,
77 					   pte_is_tagged);
78 	}
79 }
80 
81 int memcmp_pages(struct page *page1, struct page *page2)
82 {
83 	char *addr1, *addr2;
84 	int ret;
85 
86 	addr1 = page_address(page1);
87 	addr2 = page_address(page2);
88 	ret = memcmp(addr1, addr2, PAGE_SIZE);
89 
90 	if (!system_supports_mte() || ret)
91 		return ret;
92 
93 	/*
94 	 * If the page content is identical but at least one of the pages is
95 	 * tagged, return non-zero to avoid KSM merging. If only one of the
96 	 * pages is tagged, set_pte_at() may zero or change the tags of the
97 	 * other page via mte_sync_tags().
98 	 */
99 	if (test_bit(PG_mte_tagged, &page1->flags) ||
100 	    test_bit(PG_mte_tagged, &page2->flags))
101 		return addr1 != addr2;
102 
103 	return ret;
104 }
105 
106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
107 {
108 	/* Enable MTE Sync Mode for EL1. */
109 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
110 	isb();
111 
112 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
113 }
114 
115 #ifdef CONFIG_KASAN_HW_TAGS
116 void mte_enable_kernel_sync(void)
117 {
118 	/*
119 	 * Make sure we enter this function when no PE has set
120 	 * async mode previously.
121 	 */
122 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
123 			"MTE async mode enabled system wide!");
124 
125 	__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
126 }
127 
128 void mte_enable_kernel_async(void)
129 {
130 	__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
131 
132 	/*
133 	 * MTE async mode is set system wide by the first PE that
134 	 * executes this function.
135 	 *
136 	 * Note: If in future KASAN acquires a runtime switching
137 	 * mode in between sync and async, this strategy needs
138 	 * to be reviewed.
139 	 */
140 	if (!system_uses_mte_async_or_asymm_mode())
141 		static_branch_enable(&mte_async_or_asymm_mode);
142 }
143 
144 void mte_enable_kernel_asymm(void)
145 {
146 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
147 		__mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
148 
149 		/*
150 		 * MTE asymm mode behaves as async mode for store
151 		 * operations. The mode is set system wide by the
152 		 * first PE that executes this function.
153 		 *
154 		 * Note: If in future KASAN acquires a runtime switching
155 		 * mode in between sync and async, this strategy needs
156 		 * to be reviewed.
157 		 */
158 		if (!system_uses_mte_async_or_asymm_mode())
159 			static_branch_enable(&mte_async_or_asymm_mode);
160 	} else {
161 		/*
162 		 * If the CPU does not support MTE asymmetric mode the
163 		 * kernel falls back on synchronous mode which is the
164 		 * default for kasan=on.
165 		 */
166 		mte_enable_kernel_sync();
167 	}
168 }
169 #endif
170 
171 #ifdef CONFIG_KASAN_HW_TAGS
172 void mte_check_tfsr_el1(void)
173 {
174 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
175 
176 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
177 		/*
178 		 * Note: isb() is not required after this direct write
179 		 * because there is no indirect read subsequent to it
180 		 * (per ARM DDI 0487F.c table D13-1).
181 		 */
182 		write_sysreg_s(0, SYS_TFSR_EL1);
183 
184 		kasan_report_async();
185 	}
186 }
187 #endif
188 
189 static void mte_update_sctlr_user(struct task_struct *task)
190 {
191 	/*
192 	 * This must be called with preemption disabled and can only be called
193 	 * on the current or next task since the CPU must match where the thread
194 	 * is going to run. The caller is responsible for calling
195 	 * update_sctlr_el1() later in the same preemption disabled block.
196 	 */
197 	unsigned long sctlr = task->thread.sctlr_user;
198 	unsigned long mte_ctrl = task->thread.mte_ctrl;
199 	unsigned long pref, resolved_mte_tcf;
200 
201 	pref = __this_cpu_read(mte_tcf_preferred);
202 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
203 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
204 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
205 		sctlr |= SCTLR_EL1_TCF0_ASYNC;
206 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
207 		sctlr |= SCTLR_EL1_TCF0_SYNC;
208 	task->thread.sctlr_user = sctlr;
209 }
210 
211 static void mte_update_gcr_excl(struct task_struct *task)
212 {
213 	/*
214 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
215 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
216 	 */
217 	if (kasan_hw_tags_enabled())
218 		return;
219 
220 	write_sysreg_s(
221 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
222 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
223 		SYS_GCR_EL1);
224 }
225 
226 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
227 				 __le32 *updptr, int nr_inst)
228 {
229 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
230 
231 	if (kasan_hw_tags_enabled())
232 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
233 }
234 
235 void mte_thread_init_user(void)
236 {
237 	if (!system_supports_mte())
238 		return;
239 
240 	/* clear any pending asynchronous tag fault */
241 	dsb(ish);
242 	write_sysreg_s(0, SYS_TFSRE0_EL1);
243 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
244 	/* disable tag checking and reset tag generation mask */
245 	set_mte_ctrl(current, 0);
246 }
247 
248 void mte_thread_switch(struct task_struct *next)
249 {
250 	if (!system_supports_mte())
251 		return;
252 
253 	mte_update_sctlr_user(next);
254 	mte_update_gcr_excl(next);
255 
256 	/*
257 	 * Check if an async tag exception occurred at EL1.
258 	 *
259 	 * Note: On the context switch path we rely on the dsb() present
260 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
261 	 * are synchronized before this point.
262 	 */
263 	isb();
264 	mte_check_tfsr_el1();
265 }
266 
267 void mte_suspend_enter(void)
268 {
269 	if (!system_supports_mte())
270 		return;
271 
272 	/*
273 	 * The barriers are required to guarantee that the indirect writes
274 	 * to TFSR_EL1 are synchronized before we report the state.
275 	 */
276 	dsb(nsh);
277 	isb();
278 
279 	/* Report SYS_TFSR_EL1 before suspend entry */
280 	mte_check_tfsr_el1();
281 }
282 
283 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
284 {
285 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
286 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
287 
288 	if (!system_supports_mte())
289 		return 0;
290 
291 	if (arg & PR_MTE_TCF_ASYNC)
292 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
293 	if (arg & PR_MTE_TCF_SYNC)
294 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
295 
296 	task->thread.mte_ctrl = mte_ctrl;
297 	if (task == current) {
298 		preempt_disable();
299 		mte_update_sctlr_user(task);
300 		mte_update_gcr_excl(task);
301 		update_sctlr_el1(task->thread.sctlr_user);
302 		preempt_enable();
303 	}
304 
305 	return 0;
306 }
307 
308 long get_mte_ctrl(struct task_struct *task)
309 {
310 	unsigned long ret;
311 	u64 mte_ctrl = task->thread.mte_ctrl;
312 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
313 		   SYS_GCR_EL1_EXCL_MASK;
314 
315 	if (!system_supports_mte())
316 		return 0;
317 
318 	ret = incl << PR_MTE_TAG_SHIFT;
319 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
320 		ret |= PR_MTE_TCF_ASYNC;
321 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
322 		ret |= PR_MTE_TCF_SYNC;
323 
324 	return ret;
325 }
326 
327 /*
328  * Access MTE tags in another process' address space as given in mm. Update
329  * the number of tags copied. Return 0 if any tags copied, error otherwise.
330  * Inspired by __access_remote_vm().
331  */
332 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
333 				struct iovec *kiov, unsigned int gup_flags)
334 {
335 	struct vm_area_struct *vma;
336 	void __user *buf = kiov->iov_base;
337 	size_t len = kiov->iov_len;
338 	int ret;
339 	int write = gup_flags & FOLL_WRITE;
340 
341 	if (!access_ok(buf, len))
342 		return -EFAULT;
343 
344 	if (mmap_read_lock_killable(mm))
345 		return -EIO;
346 
347 	while (len) {
348 		unsigned long tags, offset;
349 		void *maddr;
350 		struct page *page = NULL;
351 
352 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
353 					    &vma, NULL);
354 		if (ret <= 0)
355 			break;
356 
357 		/*
358 		 * Only copy tags if the page has been mapped as PROT_MTE
359 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
360 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
361 		 * would cause the existing tags to be cleared if the page
362 		 * was never mapped with PROT_MTE.
363 		 */
364 		if (!(vma->vm_flags & VM_MTE)) {
365 			ret = -EOPNOTSUPP;
366 			put_page(page);
367 			break;
368 		}
369 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
370 
371 		/* limit access to the end of the page */
372 		offset = offset_in_page(addr);
373 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
374 
375 		maddr = page_address(page);
376 		if (write) {
377 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
378 			set_page_dirty_lock(page);
379 		} else {
380 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
381 		}
382 		put_page(page);
383 
384 		/* error accessing the tracer's buffer */
385 		if (!tags)
386 			break;
387 
388 		len -= tags;
389 		buf += tags;
390 		addr += tags * MTE_GRANULE_SIZE;
391 	}
392 	mmap_read_unlock(mm);
393 
394 	/* return an error if no tags copied */
395 	kiov->iov_len = buf - kiov->iov_base;
396 	if (!kiov->iov_len) {
397 		/* check for error accessing the tracee's address space */
398 		if (ret <= 0)
399 			return -EIO;
400 		else
401 			return -EFAULT;
402 	}
403 
404 	return 0;
405 }
406 
407 /*
408  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
409  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
410  */
411 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
412 			      struct iovec *kiov, unsigned int gup_flags)
413 {
414 	struct mm_struct *mm;
415 	int ret;
416 
417 	mm = get_task_mm(tsk);
418 	if (!mm)
419 		return -EPERM;
420 
421 	if (!tsk->ptrace || (current != tsk->parent) ||
422 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
423 	     !ptracer_capable(tsk, mm->user_ns))) {
424 		mmput(mm);
425 		return -EPERM;
426 	}
427 
428 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
429 	mmput(mm);
430 
431 	return ret;
432 }
433 
434 int mte_ptrace_copy_tags(struct task_struct *child, long request,
435 			 unsigned long addr, unsigned long data)
436 {
437 	int ret;
438 	struct iovec kiov;
439 	struct iovec __user *uiov = (void __user *)data;
440 	unsigned int gup_flags = FOLL_FORCE;
441 
442 	if (!system_supports_mte())
443 		return -EIO;
444 
445 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
446 	    get_user(kiov.iov_len, &uiov->iov_len))
447 		return -EFAULT;
448 
449 	if (request == PTRACE_POKEMTETAGS)
450 		gup_flags |= FOLL_WRITE;
451 
452 	/* align addr to the MTE tag granule */
453 	addr &= MTE_GRANULE_MASK;
454 
455 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
456 	if (!ret)
457 		ret = put_user(kiov.iov_len, &uiov->iov_len);
458 
459 	return ret;
460 }
461 
462 static ssize_t mte_tcf_preferred_show(struct device *dev,
463 				      struct device_attribute *attr, char *buf)
464 {
465 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
466 	case MTE_CTRL_TCF_ASYNC:
467 		return sysfs_emit(buf, "async\n");
468 	case MTE_CTRL_TCF_SYNC:
469 		return sysfs_emit(buf, "sync\n");
470 	default:
471 		return sysfs_emit(buf, "???\n");
472 	}
473 }
474 
475 static ssize_t mte_tcf_preferred_store(struct device *dev,
476 				       struct device_attribute *attr,
477 				       const char *buf, size_t count)
478 {
479 	u64 tcf;
480 
481 	if (sysfs_streq(buf, "async"))
482 		tcf = MTE_CTRL_TCF_ASYNC;
483 	else if (sysfs_streq(buf, "sync"))
484 		tcf = MTE_CTRL_TCF_SYNC;
485 	else
486 		return -EINVAL;
487 
488 	device_lock(dev);
489 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
490 	device_unlock(dev);
491 
492 	return count;
493 }
494 static DEVICE_ATTR_RW(mte_tcf_preferred);
495 
496 static int register_mte_tcf_preferred_sysctl(void)
497 {
498 	unsigned int cpu;
499 
500 	if (!system_supports_mte())
501 		return 0;
502 
503 	for_each_possible_cpu(cpu) {
504 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
505 		device_create_file(get_cpu_device(cpu),
506 				   &dev_attr_mte_tcf_preferred);
507 	}
508 
509 	return 0;
510 }
511 subsys_initcall(register_mte_tcf_preferred_sysctl);
512