xref: /openbmc/linux/arch/arm64/kernel/mte.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/mm.h>
9 #include <linux/prctl.h>
10 #include <linux/sched.h>
11 #include <linux/sched/mm.h>
12 #include <linux/string.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/thread_info.h>
16 #include <linux/types.h>
17 #include <linux/uio.h>
18 
19 #include <asm/barrier.h>
20 #include <asm/cpufeature.h>
21 #include <asm/mte.h>
22 #include <asm/ptrace.h>
23 #include <asm/sysreg.h>
24 
25 u64 gcr_kernel_excl __ro_after_init;
26 
27 static bool report_fault_once = true;
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /* Whether the MTE asynchronous mode is enabled. */
31 DEFINE_STATIC_KEY_FALSE(mte_async_mode);
32 EXPORT_SYMBOL_GPL(mte_async_mode);
33 #endif
34 
35 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
36 			       bool check_swap, bool pte_is_tagged)
37 {
38 	if (check_swap && is_swap_pte(old_pte)) {
39 		swp_entry_t entry = pte_to_swp_entry(old_pte);
40 
41 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
42 			return;
43 	}
44 
45 	if (!pte_is_tagged)
46 		return;
47 
48 	page_kasan_tag_reset(page);
49 	/*
50 	 * We need smp_wmb() in between setting the flags and clearing the
51 	 * tags because if another thread reads page->flags and builds a
52 	 * tagged address out of it, there is an actual dependency to the
53 	 * memory access, but on the current thread we do not guarantee that
54 	 * the new page->flags are visible before the tags were updated.
55 	 */
56 	smp_wmb();
57 	mte_clear_page_tags(page_address(page));
58 }
59 
60 void mte_sync_tags(pte_t old_pte, pte_t pte)
61 {
62 	struct page *page = pte_page(pte);
63 	long i, nr_pages = compound_nr(page);
64 	bool check_swap = nr_pages == 1;
65 	bool pte_is_tagged = pte_tagged(pte);
66 
67 	/* Early out if there's nothing to do */
68 	if (!check_swap && !pte_is_tagged)
69 		return;
70 
71 	/* if PG_mte_tagged is set, tags have already been initialised */
72 	for (i = 0; i < nr_pages; i++, page++) {
73 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
74 			mte_sync_page_tags(page, old_pte, check_swap,
75 					   pte_is_tagged);
76 	}
77 }
78 
79 int memcmp_pages(struct page *page1, struct page *page2)
80 {
81 	char *addr1, *addr2;
82 	int ret;
83 
84 	addr1 = page_address(page1);
85 	addr2 = page_address(page2);
86 	ret = memcmp(addr1, addr2, PAGE_SIZE);
87 
88 	if (!system_supports_mte() || ret)
89 		return ret;
90 
91 	/*
92 	 * If the page content is identical but at least one of the pages is
93 	 * tagged, return non-zero to avoid KSM merging. If only one of the
94 	 * pages is tagged, set_pte_at() may zero or change the tags of the
95 	 * other page via mte_sync_tags().
96 	 */
97 	if (test_bit(PG_mte_tagged, &page1->flags) ||
98 	    test_bit(PG_mte_tagged, &page2->flags))
99 		return addr1 != addr2;
100 
101 	return ret;
102 }
103 
104 void mte_init_tags(u64 max_tag)
105 {
106 	static bool gcr_kernel_excl_initialized;
107 
108 	if (!gcr_kernel_excl_initialized) {
109 		/*
110 		 * The format of the tags in KASAN is 0xFF and in MTE is 0xF.
111 		 * This conversion extracts an MTE tag from a KASAN tag.
112 		 */
113 		u64 incl = GENMASK(FIELD_GET(MTE_TAG_MASK >> MTE_TAG_SHIFT,
114 					     max_tag), 0);
115 
116 		gcr_kernel_excl = ~incl & SYS_GCR_EL1_EXCL_MASK;
117 		gcr_kernel_excl_initialized = true;
118 	}
119 
120 	/* Enable the kernel exclude mask for random tags generation. */
121 	write_sysreg_s(SYS_GCR_EL1_RRND | gcr_kernel_excl, SYS_GCR_EL1);
122 }
123 
124 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
125 {
126 	/* Enable MTE Sync Mode for EL1. */
127 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
128 	isb();
129 
130 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
131 }
132 
133 #ifdef CONFIG_KASAN_HW_TAGS
134 void mte_enable_kernel_sync(void)
135 {
136 	/*
137 	 * Make sure we enter this function when no PE has set
138 	 * async mode previously.
139 	 */
140 	WARN_ONCE(system_uses_mte_async_mode(),
141 			"MTE async mode enabled system wide!");
142 
143 	__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
144 }
145 
146 void mte_enable_kernel_async(void)
147 {
148 	__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
149 
150 	/*
151 	 * MTE async mode is set system wide by the first PE that
152 	 * executes this function.
153 	 *
154 	 * Note: If in future KASAN acquires a runtime switching
155 	 * mode in between sync and async, this strategy needs
156 	 * to be reviewed.
157 	 */
158 	if (!system_uses_mte_async_mode())
159 		static_branch_enable(&mte_async_mode);
160 }
161 #endif
162 
163 void mte_set_report_once(bool state)
164 {
165 	WRITE_ONCE(report_fault_once, state);
166 }
167 
168 bool mte_report_once(void)
169 {
170 	return READ_ONCE(report_fault_once);
171 }
172 
173 #ifdef CONFIG_KASAN_HW_TAGS
174 void mte_check_tfsr_el1(void)
175 {
176 	u64 tfsr_el1;
177 
178 	if (!system_supports_mte())
179 		return;
180 
181 	tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
182 
183 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
184 		/*
185 		 * Note: isb() is not required after this direct write
186 		 * because there is no indirect read subsequent to it
187 		 * (per ARM DDI 0487F.c table D13-1).
188 		 */
189 		write_sysreg_s(0, SYS_TFSR_EL1);
190 
191 		kasan_report_async();
192 	}
193 }
194 #endif
195 
196 static void update_gcr_el1_excl(u64 excl)
197 {
198 
199 	/*
200 	 * Note that the mask controlled by the user via prctl() is an
201 	 * include while GCR_EL1 accepts an exclude mask.
202 	 * No need for ISB since this only affects EL0 currently, implicit
203 	 * with ERET.
204 	 */
205 	sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl);
206 }
207 
208 static void set_gcr_el1_excl(u64 excl)
209 {
210 	current->thread.gcr_user_excl = excl;
211 
212 	/*
213 	 * SYS_GCR_EL1 will be set to current->thread.gcr_user_excl value
214 	 * by mte_set_user_gcr() in kernel_exit,
215 	 */
216 }
217 
218 void mte_thread_init_user(void)
219 {
220 	if (!system_supports_mte())
221 		return;
222 
223 	/* clear any pending asynchronous tag fault */
224 	dsb(ish);
225 	write_sysreg_s(0, SYS_TFSRE0_EL1);
226 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
227 	/* disable tag checking */
228 	set_task_sctlr_el1((current->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK) |
229 			   SCTLR_EL1_TCF0_NONE);
230 	/* reset tag generation mask */
231 	set_gcr_el1_excl(SYS_GCR_EL1_EXCL_MASK);
232 }
233 
234 void mte_thread_switch(struct task_struct *next)
235 {
236 	/*
237 	 * Check if an async tag exception occurred at EL1.
238 	 *
239 	 * Note: On the context switch path we rely on the dsb() present
240 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
241 	 * are synchronized before this point.
242 	 */
243 	isb();
244 	mte_check_tfsr_el1();
245 }
246 
247 void mte_suspend_enter(void)
248 {
249 	if (!system_supports_mte())
250 		return;
251 
252 	/*
253 	 * The barriers are required to guarantee that the indirect writes
254 	 * to TFSR_EL1 are synchronized before we report the state.
255 	 */
256 	dsb(nsh);
257 	isb();
258 
259 	/* Report SYS_TFSR_EL1 before suspend entry */
260 	mte_check_tfsr_el1();
261 }
262 
263 void mte_suspend_exit(void)
264 {
265 	if (!system_supports_mte())
266 		return;
267 
268 	update_gcr_el1_excl(gcr_kernel_excl);
269 }
270 
271 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
272 {
273 	u64 sctlr = task->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK;
274 	u64 gcr_excl = ~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
275 		       SYS_GCR_EL1_EXCL_MASK;
276 
277 	if (!system_supports_mte())
278 		return 0;
279 
280 	switch (arg & PR_MTE_TCF_MASK) {
281 	case PR_MTE_TCF_NONE:
282 		sctlr |= SCTLR_EL1_TCF0_NONE;
283 		break;
284 	case PR_MTE_TCF_SYNC:
285 		sctlr |= SCTLR_EL1_TCF0_SYNC;
286 		break;
287 	case PR_MTE_TCF_ASYNC:
288 		sctlr |= SCTLR_EL1_TCF0_ASYNC;
289 		break;
290 	default:
291 		return -EINVAL;
292 	}
293 
294 	if (task != current) {
295 		task->thread.sctlr_user = sctlr;
296 		task->thread.gcr_user_excl = gcr_excl;
297 	} else {
298 		set_task_sctlr_el1(sctlr);
299 		set_gcr_el1_excl(gcr_excl);
300 	}
301 
302 	return 0;
303 }
304 
305 long get_mte_ctrl(struct task_struct *task)
306 {
307 	unsigned long ret;
308 	u64 incl = ~task->thread.gcr_user_excl & SYS_GCR_EL1_EXCL_MASK;
309 
310 	if (!system_supports_mte())
311 		return 0;
312 
313 	ret = incl << PR_MTE_TAG_SHIFT;
314 
315 	switch (task->thread.sctlr_user & SCTLR_EL1_TCF0_MASK) {
316 	case SCTLR_EL1_TCF0_NONE:
317 		ret |= PR_MTE_TCF_NONE;
318 		break;
319 	case SCTLR_EL1_TCF0_SYNC:
320 		ret |= PR_MTE_TCF_SYNC;
321 		break;
322 	case SCTLR_EL1_TCF0_ASYNC:
323 		ret |= PR_MTE_TCF_ASYNC;
324 		break;
325 	}
326 
327 	return ret;
328 }
329 
330 /*
331  * Access MTE tags in another process' address space as given in mm. Update
332  * the number of tags copied. Return 0 if any tags copied, error otherwise.
333  * Inspired by __access_remote_vm().
334  */
335 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
336 				struct iovec *kiov, unsigned int gup_flags)
337 {
338 	struct vm_area_struct *vma;
339 	void __user *buf = kiov->iov_base;
340 	size_t len = kiov->iov_len;
341 	int ret;
342 	int write = gup_flags & FOLL_WRITE;
343 
344 	if (!access_ok(buf, len))
345 		return -EFAULT;
346 
347 	if (mmap_read_lock_killable(mm))
348 		return -EIO;
349 
350 	while (len) {
351 		unsigned long tags, offset;
352 		void *maddr;
353 		struct page *page = NULL;
354 
355 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
356 					    &vma, NULL);
357 		if (ret <= 0)
358 			break;
359 
360 		/*
361 		 * Only copy tags if the page has been mapped as PROT_MTE
362 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
363 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
364 		 * would cause the existing tags to be cleared if the page
365 		 * was never mapped with PROT_MTE.
366 		 */
367 		if (!(vma->vm_flags & VM_MTE)) {
368 			ret = -EOPNOTSUPP;
369 			put_page(page);
370 			break;
371 		}
372 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
373 
374 		/* limit access to the end of the page */
375 		offset = offset_in_page(addr);
376 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
377 
378 		maddr = page_address(page);
379 		if (write) {
380 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
381 			set_page_dirty_lock(page);
382 		} else {
383 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
384 		}
385 		put_page(page);
386 
387 		/* error accessing the tracer's buffer */
388 		if (!tags)
389 			break;
390 
391 		len -= tags;
392 		buf += tags;
393 		addr += tags * MTE_GRANULE_SIZE;
394 	}
395 	mmap_read_unlock(mm);
396 
397 	/* return an error if no tags copied */
398 	kiov->iov_len = buf - kiov->iov_base;
399 	if (!kiov->iov_len) {
400 		/* check for error accessing the tracee's address space */
401 		if (ret <= 0)
402 			return -EIO;
403 		else
404 			return -EFAULT;
405 	}
406 
407 	return 0;
408 }
409 
410 /*
411  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
412  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
413  */
414 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
415 			      struct iovec *kiov, unsigned int gup_flags)
416 {
417 	struct mm_struct *mm;
418 	int ret;
419 
420 	mm = get_task_mm(tsk);
421 	if (!mm)
422 		return -EPERM;
423 
424 	if (!tsk->ptrace || (current != tsk->parent) ||
425 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
426 	     !ptracer_capable(tsk, mm->user_ns))) {
427 		mmput(mm);
428 		return -EPERM;
429 	}
430 
431 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
432 	mmput(mm);
433 
434 	return ret;
435 }
436 
437 int mte_ptrace_copy_tags(struct task_struct *child, long request,
438 			 unsigned long addr, unsigned long data)
439 {
440 	int ret;
441 	struct iovec kiov;
442 	struct iovec __user *uiov = (void __user *)data;
443 	unsigned int gup_flags = FOLL_FORCE;
444 
445 	if (!system_supports_mte())
446 		return -EIO;
447 
448 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
449 	    get_user(kiov.iov_len, &uiov->iov_len))
450 		return -EFAULT;
451 
452 	if (request == PTRACE_POKEMTETAGS)
453 		gup_flags |= FOLL_WRITE;
454 
455 	/* align addr to the MTE tag granule */
456 	addr &= MTE_GRANULE_MASK;
457 
458 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
459 	if (!ret)
460 		ret = put_user(kiov.iov_len, &uiov->iov_len);
461 
462 	return ret;
463 }
464