1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/kernel.h> 8 #include <linux/mm.h> 9 #include <linux/prctl.h> 10 #include <linux/sched.h> 11 #include <linux/sched/mm.h> 12 #include <linux/string.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/thread_info.h> 16 #include <linux/types.h> 17 #include <linux/uio.h> 18 19 #include <asm/barrier.h> 20 #include <asm/cpufeature.h> 21 #include <asm/mte.h> 22 #include <asm/ptrace.h> 23 #include <asm/sysreg.h> 24 25 u64 gcr_kernel_excl __ro_after_init; 26 27 static bool report_fault_once = true; 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* Whether the MTE asynchronous mode is enabled. */ 31 DEFINE_STATIC_KEY_FALSE(mte_async_mode); 32 EXPORT_SYMBOL_GPL(mte_async_mode); 33 #endif 34 35 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 36 bool check_swap, bool pte_is_tagged) 37 { 38 if (check_swap && is_swap_pte(old_pte)) { 39 swp_entry_t entry = pte_to_swp_entry(old_pte); 40 41 if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) 42 return; 43 } 44 45 if (!pte_is_tagged) 46 return; 47 48 page_kasan_tag_reset(page); 49 /* 50 * We need smp_wmb() in between setting the flags and clearing the 51 * tags because if another thread reads page->flags and builds a 52 * tagged address out of it, there is an actual dependency to the 53 * memory access, but on the current thread we do not guarantee that 54 * the new page->flags are visible before the tags were updated. 55 */ 56 smp_wmb(); 57 mte_clear_page_tags(page_address(page)); 58 } 59 60 void mte_sync_tags(pte_t old_pte, pte_t pte) 61 { 62 struct page *page = pte_page(pte); 63 long i, nr_pages = compound_nr(page); 64 bool check_swap = nr_pages == 1; 65 bool pte_is_tagged = pte_tagged(pte); 66 67 /* Early out if there's nothing to do */ 68 if (!check_swap && !pte_is_tagged) 69 return; 70 71 /* if PG_mte_tagged is set, tags have already been initialised */ 72 for (i = 0; i < nr_pages; i++, page++) { 73 if (!test_and_set_bit(PG_mte_tagged, &page->flags)) 74 mte_sync_page_tags(page, old_pte, check_swap, 75 pte_is_tagged); 76 } 77 } 78 79 int memcmp_pages(struct page *page1, struct page *page2) 80 { 81 char *addr1, *addr2; 82 int ret; 83 84 addr1 = page_address(page1); 85 addr2 = page_address(page2); 86 ret = memcmp(addr1, addr2, PAGE_SIZE); 87 88 if (!system_supports_mte() || ret) 89 return ret; 90 91 /* 92 * If the page content is identical but at least one of the pages is 93 * tagged, return non-zero to avoid KSM merging. If only one of the 94 * pages is tagged, set_pte_at() may zero or change the tags of the 95 * other page via mte_sync_tags(). 96 */ 97 if (test_bit(PG_mte_tagged, &page1->flags) || 98 test_bit(PG_mte_tagged, &page2->flags)) 99 return addr1 != addr2; 100 101 return ret; 102 } 103 104 void mte_init_tags(u64 max_tag) 105 { 106 static bool gcr_kernel_excl_initialized; 107 108 if (!gcr_kernel_excl_initialized) { 109 /* 110 * The format of the tags in KASAN is 0xFF and in MTE is 0xF. 111 * This conversion extracts an MTE tag from a KASAN tag. 112 */ 113 u64 incl = GENMASK(FIELD_GET(MTE_TAG_MASK >> MTE_TAG_SHIFT, 114 max_tag), 0); 115 116 gcr_kernel_excl = ~incl & SYS_GCR_EL1_EXCL_MASK; 117 gcr_kernel_excl_initialized = true; 118 } 119 120 /* Enable the kernel exclude mask for random tags generation. */ 121 write_sysreg_s(SYS_GCR_EL1_RRND | gcr_kernel_excl, SYS_GCR_EL1); 122 } 123 124 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 125 { 126 /* Enable MTE Sync Mode for EL1. */ 127 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf); 128 isb(); 129 130 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 131 } 132 133 #ifdef CONFIG_KASAN_HW_TAGS 134 void mte_enable_kernel_sync(void) 135 { 136 /* 137 * Make sure we enter this function when no PE has set 138 * async mode previously. 139 */ 140 WARN_ONCE(system_uses_mte_async_mode(), 141 "MTE async mode enabled system wide!"); 142 143 __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC); 144 } 145 146 void mte_enable_kernel_async(void) 147 { 148 __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC); 149 150 /* 151 * MTE async mode is set system wide by the first PE that 152 * executes this function. 153 * 154 * Note: If in future KASAN acquires a runtime switching 155 * mode in between sync and async, this strategy needs 156 * to be reviewed. 157 */ 158 if (!system_uses_mte_async_mode()) 159 static_branch_enable(&mte_async_mode); 160 } 161 #endif 162 163 void mte_set_report_once(bool state) 164 { 165 WRITE_ONCE(report_fault_once, state); 166 } 167 168 bool mte_report_once(void) 169 { 170 return READ_ONCE(report_fault_once); 171 } 172 173 #ifdef CONFIG_KASAN_HW_TAGS 174 void mte_check_tfsr_el1(void) 175 { 176 u64 tfsr_el1; 177 178 if (!system_supports_mte()) 179 return; 180 181 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 182 183 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 184 /* 185 * Note: isb() is not required after this direct write 186 * because there is no indirect read subsequent to it 187 * (per ARM DDI 0487F.c table D13-1). 188 */ 189 write_sysreg_s(0, SYS_TFSR_EL1); 190 191 kasan_report_async(); 192 } 193 } 194 #endif 195 196 static void set_gcr_el1_excl(u64 excl) 197 { 198 current->thread.gcr_user_excl = excl; 199 200 /* 201 * SYS_GCR_EL1 will be set to current->thread.gcr_user_excl value 202 * by mte_set_user_gcr() in kernel_exit, 203 */ 204 } 205 206 void mte_thread_init_user(void) 207 { 208 if (!system_supports_mte()) 209 return; 210 211 /* clear any pending asynchronous tag fault */ 212 dsb(ish); 213 write_sysreg_s(0, SYS_TFSRE0_EL1); 214 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 215 /* disable tag checking */ 216 set_task_sctlr_el1((current->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK) | 217 SCTLR_EL1_TCF0_NONE); 218 /* reset tag generation mask */ 219 set_gcr_el1_excl(SYS_GCR_EL1_EXCL_MASK); 220 } 221 222 void mte_thread_switch(struct task_struct *next) 223 { 224 /* 225 * Check if an async tag exception occurred at EL1. 226 * 227 * Note: On the context switch path we rely on the dsb() present 228 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 229 * are synchronized before this point. 230 */ 231 isb(); 232 mte_check_tfsr_el1(); 233 } 234 235 void mte_suspend_enter(void) 236 { 237 if (!system_supports_mte()) 238 return; 239 240 /* 241 * The barriers are required to guarantee that the indirect writes 242 * to TFSR_EL1 are synchronized before we report the state. 243 */ 244 dsb(nsh); 245 isb(); 246 247 /* Report SYS_TFSR_EL1 before suspend entry */ 248 mte_check_tfsr_el1(); 249 } 250 251 void mte_suspend_exit(void) 252 { 253 if (!system_supports_mte()) 254 return; 255 256 sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, gcr_kernel_excl); 257 isb(); 258 } 259 260 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 261 { 262 u64 sctlr = task->thread.sctlr_user & ~SCTLR_EL1_TCF0_MASK; 263 u64 gcr_excl = ~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 264 SYS_GCR_EL1_EXCL_MASK; 265 266 if (!system_supports_mte()) 267 return 0; 268 269 switch (arg & PR_MTE_TCF_MASK) { 270 case PR_MTE_TCF_NONE: 271 sctlr |= SCTLR_EL1_TCF0_NONE; 272 break; 273 case PR_MTE_TCF_SYNC: 274 sctlr |= SCTLR_EL1_TCF0_SYNC; 275 break; 276 case PR_MTE_TCF_ASYNC: 277 sctlr |= SCTLR_EL1_TCF0_ASYNC; 278 break; 279 default: 280 return -EINVAL; 281 } 282 283 if (task != current) { 284 task->thread.sctlr_user = sctlr; 285 task->thread.gcr_user_excl = gcr_excl; 286 } else { 287 set_task_sctlr_el1(sctlr); 288 set_gcr_el1_excl(gcr_excl); 289 } 290 291 return 0; 292 } 293 294 long get_mte_ctrl(struct task_struct *task) 295 { 296 unsigned long ret; 297 u64 incl = ~task->thread.gcr_user_excl & SYS_GCR_EL1_EXCL_MASK; 298 299 if (!system_supports_mte()) 300 return 0; 301 302 ret = incl << PR_MTE_TAG_SHIFT; 303 304 switch (task->thread.sctlr_user & SCTLR_EL1_TCF0_MASK) { 305 case SCTLR_EL1_TCF0_NONE: 306 ret |= PR_MTE_TCF_NONE; 307 break; 308 case SCTLR_EL1_TCF0_SYNC: 309 ret |= PR_MTE_TCF_SYNC; 310 break; 311 case SCTLR_EL1_TCF0_ASYNC: 312 ret |= PR_MTE_TCF_ASYNC; 313 break; 314 } 315 316 return ret; 317 } 318 319 /* 320 * Access MTE tags in another process' address space as given in mm. Update 321 * the number of tags copied. Return 0 if any tags copied, error otherwise. 322 * Inspired by __access_remote_vm(). 323 */ 324 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 325 struct iovec *kiov, unsigned int gup_flags) 326 { 327 struct vm_area_struct *vma; 328 void __user *buf = kiov->iov_base; 329 size_t len = kiov->iov_len; 330 int ret; 331 int write = gup_flags & FOLL_WRITE; 332 333 if (!access_ok(buf, len)) 334 return -EFAULT; 335 336 if (mmap_read_lock_killable(mm)) 337 return -EIO; 338 339 while (len) { 340 unsigned long tags, offset; 341 void *maddr; 342 struct page *page = NULL; 343 344 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 345 &vma, NULL); 346 if (ret <= 0) 347 break; 348 349 /* 350 * Only copy tags if the page has been mapped as PROT_MTE 351 * (PG_mte_tagged set). Otherwise the tags are not valid and 352 * not accessible to user. Moreover, an mprotect(PROT_MTE) 353 * would cause the existing tags to be cleared if the page 354 * was never mapped with PROT_MTE. 355 */ 356 if (!(vma->vm_flags & VM_MTE)) { 357 ret = -EOPNOTSUPP; 358 put_page(page); 359 break; 360 } 361 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); 362 363 /* limit access to the end of the page */ 364 offset = offset_in_page(addr); 365 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 366 367 maddr = page_address(page); 368 if (write) { 369 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 370 set_page_dirty_lock(page); 371 } else { 372 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 373 } 374 put_page(page); 375 376 /* error accessing the tracer's buffer */ 377 if (!tags) 378 break; 379 380 len -= tags; 381 buf += tags; 382 addr += tags * MTE_GRANULE_SIZE; 383 } 384 mmap_read_unlock(mm); 385 386 /* return an error if no tags copied */ 387 kiov->iov_len = buf - kiov->iov_base; 388 if (!kiov->iov_len) { 389 /* check for error accessing the tracee's address space */ 390 if (ret <= 0) 391 return -EIO; 392 else 393 return -EFAULT; 394 } 395 396 return 0; 397 } 398 399 /* 400 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 401 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 402 */ 403 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 404 struct iovec *kiov, unsigned int gup_flags) 405 { 406 struct mm_struct *mm; 407 int ret; 408 409 mm = get_task_mm(tsk); 410 if (!mm) 411 return -EPERM; 412 413 if (!tsk->ptrace || (current != tsk->parent) || 414 ((get_dumpable(mm) != SUID_DUMP_USER) && 415 !ptracer_capable(tsk, mm->user_ns))) { 416 mmput(mm); 417 return -EPERM; 418 } 419 420 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 421 mmput(mm); 422 423 return ret; 424 } 425 426 int mte_ptrace_copy_tags(struct task_struct *child, long request, 427 unsigned long addr, unsigned long data) 428 { 429 int ret; 430 struct iovec kiov; 431 struct iovec __user *uiov = (void __user *)data; 432 unsigned int gup_flags = FOLL_FORCE; 433 434 if (!system_supports_mte()) 435 return -EIO; 436 437 if (get_user(kiov.iov_base, &uiov->iov_base) || 438 get_user(kiov.iov_len, &uiov->iov_len)) 439 return -EFAULT; 440 441 if (request == PTRACE_POKEMTETAGS) 442 gup_flags |= FOLL_WRITE; 443 444 /* align addr to the MTE tag granule */ 445 addr &= MTE_GRANULE_MASK; 446 447 ret = access_remote_tags(child, addr, &kiov, gup_flags); 448 if (!ret) 449 ret = put_user(kiov.iov_len, &uiov->iov_len); 450 451 return ret; 452 } 453