1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 39 bool check_swap, bool pte_is_tagged) 40 { 41 if (check_swap && is_swap_pte(old_pte)) { 42 swp_entry_t entry = pte_to_swp_entry(old_pte); 43 44 if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) 45 return; 46 } 47 48 if (!pte_is_tagged) 49 return; 50 51 mte_clear_page_tags(page_address(page)); 52 } 53 54 void mte_sync_tags(pte_t old_pte, pte_t pte) 55 { 56 struct page *page = pte_page(pte); 57 long i, nr_pages = compound_nr(page); 58 bool check_swap = nr_pages == 1; 59 bool pte_is_tagged = pte_tagged(pte); 60 61 /* Early out if there's nothing to do */ 62 if (!check_swap && !pte_is_tagged) 63 return; 64 65 /* if PG_mte_tagged is set, tags have already been initialised */ 66 for (i = 0; i < nr_pages; i++, page++) { 67 if (!test_and_set_bit(PG_mte_tagged, &page->flags)) 68 mte_sync_page_tags(page, old_pte, check_swap, 69 pte_is_tagged); 70 } 71 72 /* ensure the tags are visible before the PTE is set */ 73 smp_wmb(); 74 } 75 76 int memcmp_pages(struct page *page1, struct page *page2) 77 { 78 char *addr1, *addr2; 79 int ret; 80 81 addr1 = page_address(page1); 82 addr2 = page_address(page2); 83 ret = memcmp(addr1, addr2, PAGE_SIZE); 84 85 if (!system_supports_mte() || ret) 86 return ret; 87 88 /* 89 * If the page content is identical but at least one of the pages is 90 * tagged, return non-zero to avoid KSM merging. If only one of the 91 * pages is tagged, set_pte_at() may zero or change the tags of the 92 * other page via mte_sync_tags(). 93 */ 94 if (test_bit(PG_mte_tagged, &page1->flags) || 95 test_bit(PG_mte_tagged, &page2->flags)) 96 return addr1 != addr2; 97 98 return ret; 99 } 100 101 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 102 { 103 /* Enable MTE Sync Mode for EL1. */ 104 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 105 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 106 isb(); 107 108 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 109 } 110 111 #ifdef CONFIG_KASAN_HW_TAGS 112 void mte_enable_kernel_sync(void) 113 { 114 /* 115 * Make sure we enter this function when no PE has set 116 * async mode previously. 117 */ 118 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 119 "MTE async mode enabled system wide!"); 120 121 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 122 } 123 124 void mte_enable_kernel_async(void) 125 { 126 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 127 128 /* 129 * MTE async mode is set system wide by the first PE that 130 * executes this function. 131 * 132 * Note: If in future KASAN acquires a runtime switching 133 * mode in between sync and async, this strategy needs 134 * to be reviewed. 135 */ 136 if (!system_uses_mte_async_or_asymm_mode()) 137 static_branch_enable(&mte_async_or_asymm_mode); 138 } 139 140 void mte_enable_kernel_asymm(void) 141 { 142 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 143 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 144 145 /* 146 * MTE asymm mode behaves as async mode for store 147 * operations. The mode is set system wide by the 148 * first PE that executes this function. 149 * 150 * Note: If in future KASAN acquires a runtime switching 151 * mode in between sync and async, this strategy needs 152 * to be reviewed. 153 */ 154 if (!system_uses_mte_async_or_asymm_mode()) 155 static_branch_enable(&mte_async_or_asymm_mode); 156 } else { 157 /* 158 * If the CPU does not support MTE asymmetric mode the 159 * kernel falls back on synchronous mode which is the 160 * default for kasan=on. 161 */ 162 mte_enable_kernel_sync(); 163 } 164 } 165 #endif 166 167 #ifdef CONFIG_KASAN_HW_TAGS 168 void mte_check_tfsr_el1(void) 169 { 170 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 171 172 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 173 /* 174 * Note: isb() is not required after this direct write 175 * because there is no indirect read subsequent to it 176 * (per ARM DDI 0487F.c table D13-1). 177 */ 178 write_sysreg_s(0, SYS_TFSR_EL1); 179 180 kasan_report_async(); 181 } 182 } 183 #endif 184 185 /* 186 * This is where we actually resolve the system and process MTE mode 187 * configuration into an actual value in SCTLR_EL1 that affects 188 * userspace. 189 */ 190 static void mte_update_sctlr_user(struct task_struct *task) 191 { 192 /* 193 * This must be called with preemption disabled and can only be called 194 * on the current or next task since the CPU must match where the thread 195 * is going to run. The caller is responsible for calling 196 * update_sctlr_el1() later in the same preemption disabled block. 197 */ 198 unsigned long sctlr = task->thread.sctlr_user; 199 unsigned long mte_ctrl = task->thread.mte_ctrl; 200 unsigned long pref, resolved_mte_tcf; 201 202 pref = __this_cpu_read(mte_tcf_preferred); 203 /* 204 * If there is no overlap between the system preferred and 205 * program requested values go with what was requested. 206 */ 207 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 208 sctlr &= ~SCTLR_EL1_TCF0_MASK; 209 /* 210 * Pick an actual setting. The order in which we check for 211 * set bits and map into register values determines our 212 * default order. 213 */ 214 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 215 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 216 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 217 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 218 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 219 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 220 task->thread.sctlr_user = sctlr; 221 } 222 223 static void mte_update_gcr_excl(struct task_struct *task) 224 { 225 /* 226 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 227 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 228 */ 229 if (kasan_hw_tags_enabled()) 230 return; 231 232 write_sysreg_s( 233 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 234 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 235 SYS_GCR_EL1); 236 } 237 238 #ifdef CONFIG_KASAN_HW_TAGS 239 /* Only called from assembly, silence sparse */ 240 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 241 __le32 *updptr, int nr_inst); 242 243 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 244 __le32 *updptr, int nr_inst) 245 { 246 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 247 248 if (kasan_hw_tags_enabled()) 249 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 250 } 251 #endif 252 253 void mte_thread_init_user(void) 254 { 255 if (!system_supports_mte()) 256 return; 257 258 /* clear any pending asynchronous tag fault */ 259 dsb(ish); 260 write_sysreg_s(0, SYS_TFSRE0_EL1); 261 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 262 /* disable tag checking and reset tag generation mask */ 263 set_mte_ctrl(current, 0); 264 } 265 266 void mte_thread_switch(struct task_struct *next) 267 { 268 if (!system_supports_mte()) 269 return; 270 271 mte_update_sctlr_user(next); 272 mte_update_gcr_excl(next); 273 274 /* TCO may not have been disabled on exception entry for the current task. */ 275 mte_disable_tco_entry(next); 276 277 /* 278 * Check if an async tag exception occurred at EL1. 279 * 280 * Note: On the context switch path we rely on the dsb() present 281 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 282 * are synchronized before this point. 283 */ 284 isb(); 285 mte_check_tfsr_el1(); 286 } 287 288 void mte_cpu_setup(void) 289 { 290 u64 rgsr; 291 292 /* 293 * CnP must be enabled only after the MAIR_EL1 register has been set 294 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 295 * lead to the wrong memory type being used for a brief window during 296 * CPU power-up. 297 * 298 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 299 * make sure that is the case. 300 */ 301 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 302 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 303 304 /* Normal Tagged memory type at the corresponding MAIR index */ 305 sysreg_clear_set(mair_el1, 306 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 307 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 308 MT_NORMAL_TAGGED)); 309 310 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 311 312 /* 313 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 314 * RGSR_EL1.SEED must be non-zero for IRG to produce 315 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 316 * must initialize it. 317 */ 318 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 319 SYS_RGSR_EL1_SEED_SHIFT; 320 if (rgsr == 0) 321 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 322 write_sysreg_s(rgsr, SYS_RGSR_EL1); 323 324 /* clear any pending tag check faults in TFSR*_EL1 */ 325 write_sysreg_s(0, SYS_TFSR_EL1); 326 write_sysreg_s(0, SYS_TFSRE0_EL1); 327 328 local_flush_tlb_all(); 329 } 330 331 void mte_suspend_enter(void) 332 { 333 if (!system_supports_mte()) 334 return; 335 336 /* 337 * The barriers are required to guarantee that the indirect writes 338 * to TFSR_EL1 are synchronized before we report the state. 339 */ 340 dsb(nsh); 341 isb(); 342 343 /* Report SYS_TFSR_EL1 before suspend entry */ 344 mte_check_tfsr_el1(); 345 } 346 347 void mte_suspend_exit(void) 348 { 349 if (!system_supports_mte()) 350 return; 351 352 mte_cpu_setup(); 353 } 354 355 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 356 { 357 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 358 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 359 360 if (!system_supports_mte()) 361 return 0; 362 363 if (arg & PR_MTE_TCF_ASYNC) 364 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 365 if (arg & PR_MTE_TCF_SYNC) 366 mte_ctrl |= MTE_CTRL_TCF_SYNC; 367 368 /* 369 * If the system supports it and both sync and async modes are 370 * specified then implicitly enable asymmetric mode. 371 * Userspace could see a mix of both sync and async anyway due 372 * to differing or changing defaults on CPUs. 373 */ 374 if (cpus_have_cap(ARM64_MTE_ASYMM) && 375 (arg & PR_MTE_TCF_ASYNC) && 376 (arg & PR_MTE_TCF_SYNC)) 377 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 378 379 task->thread.mte_ctrl = mte_ctrl; 380 if (task == current) { 381 preempt_disable(); 382 mte_update_sctlr_user(task); 383 mte_update_gcr_excl(task); 384 update_sctlr_el1(task->thread.sctlr_user); 385 preempt_enable(); 386 } 387 388 return 0; 389 } 390 391 long get_mte_ctrl(struct task_struct *task) 392 { 393 unsigned long ret; 394 u64 mte_ctrl = task->thread.mte_ctrl; 395 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 396 SYS_GCR_EL1_EXCL_MASK; 397 398 if (!system_supports_mte()) 399 return 0; 400 401 ret = incl << PR_MTE_TAG_SHIFT; 402 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 403 ret |= PR_MTE_TCF_ASYNC; 404 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 405 ret |= PR_MTE_TCF_SYNC; 406 407 return ret; 408 } 409 410 /* 411 * Access MTE tags in another process' address space as given in mm. Update 412 * the number of tags copied. Return 0 if any tags copied, error otherwise. 413 * Inspired by __access_remote_vm(). 414 */ 415 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 416 struct iovec *kiov, unsigned int gup_flags) 417 { 418 struct vm_area_struct *vma; 419 void __user *buf = kiov->iov_base; 420 size_t len = kiov->iov_len; 421 int ret; 422 int write = gup_flags & FOLL_WRITE; 423 424 if (!access_ok(buf, len)) 425 return -EFAULT; 426 427 if (mmap_read_lock_killable(mm)) 428 return -EIO; 429 430 while (len) { 431 unsigned long tags, offset; 432 void *maddr; 433 struct page *page = NULL; 434 435 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 436 &vma, NULL); 437 if (ret <= 0) 438 break; 439 440 /* 441 * Only copy tags if the page has been mapped as PROT_MTE 442 * (PG_mte_tagged set). Otherwise the tags are not valid and 443 * not accessible to user. Moreover, an mprotect(PROT_MTE) 444 * would cause the existing tags to be cleared if the page 445 * was never mapped with PROT_MTE. 446 */ 447 if (!(vma->vm_flags & VM_MTE)) { 448 ret = -EOPNOTSUPP; 449 put_page(page); 450 break; 451 } 452 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); 453 454 /* limit access to the end of the page */ 455 offset = offset_in_page(addr); 456 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 457 458 maddr = page_address(page); 459 if (write) { 460 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 461 set_page_dirty_lock(page); 462 } else { 463 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 464 } 465 put_page(page); 466 467 /* error accessing the tracer's buffer */ 468 if (!tags) 469 break; 470 471 len -= tags; 472 buf += tags; 473 addr += tags * MTE_GRANULE_SIZE; 474 } 475 mmap_read_unlock(mm); 476 477 /* return an error if no tags copied */ 478 kiov->iov_len = buf - kiov->iov_base; 479 if (!kiov->iov_len) { 480 /* check for error accessing the tracee's address space */ 481 if (ret <= 0) 482 return -EIO; 483 else 484 return -EFAULT; 485 } 486 487 return 0; 488 } 489 490 /* 491 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 492 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 493 */ 494 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 495 struct iovec *kiov, unsigned int gup_flags) 496 { 497 struct mm_struct *mm; 498 int ret; 499 500 mm = get_task_mm(tsk); 501 if (!mm) 502 return -EPERM; 503 504 if (!tsk->ptrace || (current != tsk->parent) || 505 ((get_dumpable(mm) != SUID_DUMP_USER) && 506 !ptracer_capable(tsk, mm->user_ns))) { 507 mmput(mm); 508 return -EPERM; 509 } 510 511 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 512 mmput(mm); 513 514 return ret; 515 } 516 517 int mte_ptrace_copy_tags(struct task_struct *child, long request, 518 unsigned long addr, unsigned long data) 519 { 520 int ret; 521 struct iovec kiov; 522 struct iovec __user *uiov = (void __user *)data; 523 unsigned int gup_flags = FOLL_FORCE; 524 525 if (!system_supports_mte()) 526 return -EIO; 527 528 if (get_user(kiov.iov_base, &uiov->iov_base) || 529 get_user(kiov.iov_len, &uiov->iov_len)) 530 return -EFAULT; 531 532 if (request == PTRACE_POKEMTETAGS) 533 gup_flags |= FOLL_WRITE; 534 535 /* align addr to the MTE tag granule */ 536 addr &= MTE_GRANULE_MASK; 537 538 ret = access_remote_tags(child, addr, &kiov, gup_flags); 539 if (!ret) 540 ret = put_user(kiov.iov_len, &uiov->iov_len); 541 542 return ret; 543 } 544 545 static ssize_t mte_tcf_preferred_show(struct device *dev, 546 struct device_attribute *attr, char *buf) 547 { 548 switch (per_cpu(mte_tcf_preferred, dev->id)) { 549 case MTE_CTRL_TCF_ASYNC: 550 return sysfs_emit(buf, "async\n"); 551 case MTE_CTRL_TCF_SYNC: 552 return sysfs_emit(buf, "sync\n"); 553 case MTE_CTRL_TCF_ASYMM: 554 return sysfs_emit(buf, "asymm\n"); 555 default: 556 return sysfs_emit(buf, "???\n"); 557 } 558 } 559 560 static ssize_t mte_tcf_preferred_store(struct device *dev, 561 struct device_attribute *attr, 562 const char *buf, size_t count) 563 { 564 u64 tcf; 565 566 if (sysfs_streq(buf, "async")) 567 tcf = MTE_CTRL_TCF_ASYNC; 568 else if (sysfs_streq(buf, "sync")) 569 tcf = MTE_CTRL_TCF_SYNC; 570 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 571 tcf = MTE_CTRL_TCF_ASYMM; 572 else 573 return -EINVAL; 574 575 device_lock(dev); 576 per_cpu(mte_tcf_preferred, dev->id) = tcf; 577 device_unlock(dev); 578 579 return count; 580 } 581 static DEVICE_ATTR_RW(mte_tcf_preferred); 582 583 static int register_mte_tcf_preferred_sysctl(void) 584 { 585 unsigned int cpu; 586 587 if (!system_supports_mte()) 588 return 0; 589 590 for_each_possible_cpu(cpu) { 591 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 592 device_create_file(get_cpu_device(cpu), 593 &dev_attr_mte_tcf_preferred); 594 } 595 596 return 0; 597 } 598 subsys_initcall(register_mte_tcf_preferred_sysctl); 599 600 /* 601 * Return 0 on success, the number of bytes not probed otherwise. 602 */ 603 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 604 { 605 const char __user *end = uaddr + size; 606 int err = 0; 607 char val; 608 609 __raw_get_user(val, uaddr, err); 610 if (err) 611 return size; 612 613 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 614 while (uaddr < end) { 615 /* 616 * A read is sufficient for mte, the caller should have probed 617 * for the pte write permission if required. 618 */ 619 __raw_get_user(val, uaddr, err); 620 if (err) 621 return end - uaddr; 622 uaddr += MTE_GRANULE_SIZE; 623 } 624 (void)val; 625 626 return 0; 627 } 628