xref: /openbmc/linux/arch/arm64/kernel/mte.c (revision 36926a7d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 			       bool check_swap, bool pte_is_tagged)
40 {
41 	if (check_swap && is_swap_pte(old_pte)) {
42 		swp_entry_t entry = pte_to_swp_entry(old_pte);
43 
44 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
45 			return;
46 	}
47 
48 	if (!pte_is_tagged)
49 		return;
50 
51 	mte_clear_page_tags(page_address(page));
52 }
53 
54 void mte_sync_tags(pte_t old_pte, pte_t pte)
55 {
56 	struct page *page = pte_page(pte);
57 	long i, nr_pages = compound_nr(page);
58 	bool check_swap = nr_pages == 1;
59 	bool pte_is_tagged = pte_tagged(pte);
60 
61 	/* Early out if there's nothing to do */
62 	if (!check_swap && !pte_is_tagged)
63 		return;
64 
65 	/* if PG_mte_tagged is set, tags have already been initialised */
66 	for (i = 0; i < nr_pages; i++, page++) {
67 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
68 			mte_sync_page_tags(page, old_pte, check_swap,
69 					   pte_is_tagged);
70 	}
71 
72 	/* ensure the tags are visible before the PTE is set */
73 	smp_wmb();
74 }
75 
76 int memcmp_pages(struct page *page1, struct page *page2)
77 {
78 	char *addr1, *addr2;
79 	int ret;
80 
81 	addr1 = page_address(page1);
82 	addr2 = page_address(page2);
83 	ret = memcmp(addr1, addr2, PAGE_SIZE);
84 
85 	if (!system_supports_mte() || ret)
86 		return ret;
87 
88 	/*
89 	 * If the page content is identical but at least one of the pages is
90 	 * tagged, return non-zero to avoid KSM merging. If only one of the
91 	 * pages is tagged, set_pte_at() may zero or change the tags of the
92 	 * other page via mte_sync_tags().
93 	 */
94 	if (test_bit(PG_mte_tagged, &page1->flags) ||
95 	    test_bit(PG_mte_tagged, &page2->flags))
96 		return addr1 != addr2;
97 
98 	return ret;
99 }
100 
101 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
102 {
103 	/* Enable MTE Sync Mode for EL1. */
104 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
105 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
106 	isb();
107 
108 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
109 }
110 
111 #ifdef CONFIG_KASAN_HW_TAGS
112 void mte_enable_kernel_sync(void)
113 {
114 	/*
115 	 * Make sure we enter this function when no PE has set
116 	 * async mode previously.
117 	 */
118 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
119 			"MTE async mode enabled system wide!");
120 
121 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
122 }
123 
124 void mte_enable_kernel_async(void)
125 {
126 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
127 
128 	/*
129 	 * MTE async mode is set system wide by the first PE that
130 	 * executes this function.
131 	 *
132 	 * Note: If in future KASAN acquires a runtime switching
133 	 * mode in between sync and async, this strategy needs
134 	 * to be reviewed.
135 	 */
136 	if (!system_uses_mte_async_or_asymm_mode())
137 		static_branch_enable(&mte_async_or_asymm_mode);
138 }
139 
140 void mte_enable_kernel_asymm(void)
141 {
142 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
143 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
144 
145 		/*
146 		 * MTE asymm mode behaves as async mode for store
147 		 * operations. The mode is set system wide by the
148 		 * first PE that executes this function.
149 		 *
150 		 * Note: If in future KASAN acquires a runtime switching
151 		 * mode in between sync and async, this strategy needs
152 		 * to be reviewed.
153 		 */
154 		if (!system_uses_mte_async_or_asymm_mode())
155 			static_branch_enable(&mte_async_or_asymm_mode);
156 	} else {
157 		/*
158 		 * If the CPU does not support MTE asymmetric mode the
159 		 * kernel falls back on synchronous mode which is the
160 		 * default for kasan=on.
161 		 */
162 		mte_enable_kernel_sync();
163 	}
164 }
165 #endif
166 
167 #ifdef CONFIG_KASAN_HW_TAGS
168 void mte_check_tfsr_el1(void)
169 {
170 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
171 
172 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
173 		/*
174 		 * Note: isb() is not required after this direct write
175 		 * because there is no indirect read subsequent to it
176 		 * (per ARM DDI 0487F.c table D13-1).
177 		 */
178 		write_sysreg_s(0, SYS_TFSR_EL1);
179 
180 		kasan_report_async();
181 	}
182 }
183 #endif
184 
185 /*
186  * This is where we actually resolve the system and process MTE mode
187  * configuration into an actual value in SCTLR_EL1 that affects
188  * userspace.
189  */
190 static void mte_update_sctlr_user(struct task_struct *task)
191 {
192 	/*
193 	 * This must be called with preemption disabled and can only be called
194 	 * on the current or next task since the CPU must match where the thread
195 	 * is going to run. The caller is responsible for calling
196 	 * update_sctlr_el1() later in the same preemption disabled block.
197 	 */
198 	unsigned long sctlr = task->thread.sctlr_user;
199 	unsigned long mte_ctrl = task->thread.mte_ctrl;
200 	unsigned long pref, resolved_mte_tcf;
201 
202 	pref = __this_cpu_read(mte_tcf_preferred);
203 	/*
204 	 * If there is no overlap between the system preferred and
205 	 * program requested values go with what was requested.
206 	 */
207 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
208 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
209 	/*
210 	 * Pick an actual setting. The order in which we check for
211 	 * set bits and map into register values determines our
212 	 * default order.
213 	 */
214 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
215 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
216 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
217 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
218 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
219 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
220 	task->thread.sctlr_user = sctlr;
221 }
222 
223 static void mte_update_gcr_excl(struct task_struct *task)
224 {
225 	/*
226 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
227 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
228 	 */
229 	if (kasan_hw_tags_enabled())
230 		return;
231 
232 	write_sysreg_s(
233 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
234 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
235 		SYS_GCR_EL1);
236 }
237 
238 #ifdef CONFIG_KASAN_HW_TAGS
239 /* Only called from assembly, silence sparse */
240 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
241 				 __le32 *updptr, int nr_inst);
242 
243 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
244 				 __le32 *updptr, int nr_inst)
245 {
246 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
247 
248 	if (kasan_hw_tags_enabled())
249 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
250 }
251 #endif
252 
253 void mte_thread_init_user(void)
254 {
255 	if (!system_supports_mte())
256 		return;
257 
258 	/* clear any pending asynchronous tag fault */
259 	dsb(ish);
260 	write_sysreg_s(0, SYS_TFSRE0_EL1);
261 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
262 	/* disable tag checking and reset tag generation mask */
263 	set_mte_ctrl(current, 0);
264 }
265 
266 void mte_thread_switch(struct task_struct *next)
267 {
268 	if (!system_supports_mte())
269 		return;
270 
271 	mte_update_sctlr_user(next);
272 	mte_update_gcr_excl(next);
273 
274 	/* TCO may not have been disabled on exception entry for the current task. */
275 	mte_disable_tco_entry(next);
276 
277 	/*
278 	 * Check if an async tag exception occurred at EL1.
279 	 *
280 	 * Note: On the context switch path we rely on the dsb() present
281 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
282 	 * are synchronized before this point.
283 	 */
284 	isb();
285 	mte_check_tfsr_el1();
286 }
287 
288 void mte_cpu_setup(void)
289 {
290 	u64 rgsr;
291 
292 	/*
293 	 * CnP must be enabled only after the MAIR_EL1 register has been set
294 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
295 	 * lead to the wrong memory type being used for a brief window during
296 	 * CPU power-up.
297 	 *
298 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
299 	 * make sure that is the case.
300 	 */
301 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
302 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
303 
304 	/* Normal Tagged memory type at the corresponding MAIR index */
305 	sysreg_clear_set(mair_el1,
306 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
307 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
308 				      MT_NORMAL_TAGGED));
309 
310 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
311 
312 	/*
313 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
314 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
315 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
316 	 * must initialize it.
317 	 */
318 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
319 	       SYS_RGSR_EL1_SEED_SHIFT;
320 	if (rgsr == 0)
321 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
322 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
323 
324 	/* clear any pending tag check faults in TFSR*_EL1 */
325 	write_sysreg_s(0, SYS_TFSR_EL1);
326 	write_sysreg_s(0, SYS_TFSRE0_EL1);
327 
328 	local_flush_tlb_all();
329 }
330 
331 void mte_suspend_enter(void)
332 {
333 	if (!system_supports_mte())
334 		return;
335 
336 	/*
337 	 * The barriers are required to guarantee that the indirect writes
338 	 * to TFSR_EL1 are synchronized before we report the state.
339 	 */
340 	dsb(nsh);
341 	isb();
342 
343 	/* Report SYS_TFSR_EL1 before suspend entry */
344 	mte_check_tfsr_el1();
345 }
346 
347 void mte_suspend_exit(void)
348 {
349 	if (!system_supports_mte())
350 		return;
351 
352 	mte_cpu_setup();
353 }
354 
355 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
356 {
357 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
358 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
359 
360 	if (!system_supports_mte())
361 		return 0;
362 
363 	if (arg & PR_MTE_TCF_ASYNC)
364 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
365 	if (arg & PR_MTE_TCF_SYNC)
366 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
367 
368 	/*
369 	 * If the system supports it and both sync and async modes are
370 	 * specified then implicitly enable asymmetric mode.
371 	 * Userspace could see a mix of both sync and async anyway due
372 	 * to differing or changing defaults on CPUs.
373 	 */
374 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
375 	    (arg & PR_MTE_TCF_ASYNC) &&
376 	    (arg & PR_MTE_TCF_SYNC))
377 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
378 
379 	task->thread.mte_ctrl = mte_ctrl;
380 	if (task == current) {
381 		preempt_disable();
382 		mte_update_sctlr_user(task);
383 		mte_update_gcr_excl(task);
384 		update_sctlr_el1(task->thread.sctlr_user);
385 		preempt_enable();
386 	}
387 
388 	return 0;
389 }
390 
391 long get_mte_ctrl(struct task_struct *task)
392 {
393 	unsigned long ret;
394 	u64 mte_ctrl = task->thread.mte_ctrl;
395 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
396 		   SYS_GCR_EL1_EXCL_MASK;
397 
398 	if (!system_supports_mte())
399 		return 0;
400 
401 	ret = incl << PR_MTE_TAG_SHIFT;
402 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
403 		ret |= PR_MTE_TCF_ASYNC;
404 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
405 		ret |= PR_MTE_TCF_SYNC;
406 
407 	return ret;
408 }
409 
410 /*
411  * Access MTE tags in another process' address space as given in mm. Update
412  * the number of tags copied. Return 0 if any tags copied, error otherwise.
413  * Inspired by __access_remote_vm().
414  */
415 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
416 				struct iovec *kiov, unsigned int gup_flags)
417 {
418 	struct vm_area_struct *vma;
419 	void __user *buf = kiov->iov_base;
420 	size_t len = kiov->iov_len;
421 	int ret;
422 	int write = gup_flags & FOLL_WRITE;
423 
424 	if (!access_ok(buf, len))
425 		return -EFAULT;
426 
427 	if (mmap_read_lock_killable(mm))
428 		return -EIO;
429 
430 	while (len) {
431 		unsigned long tags, offset;
432 		void *maddr;
433 		struct page *page = NULL;
434 
435 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
436 					    &vma, NULL);
437 		if (ret <= 0)
438 			break;
439 
440 		/*
441 		 * Only copy tags if the page has been mapped as PROT_MTE
442 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
443 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
444 		 * would cause the existing tags to be cleared if the page
445 		 * was never mapped with PROT_MTE.
446 		 */
447 		if (!(vma->vm_flags & VM_MTE)) {
448 			ret = -EOPNOTSUPP;
449 			put_page(page);
450 			break;
451 		}
452 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
453 
454 		/* limit access to the end of the page */
455 		offset = offset_in_page(addr);
456 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
457 
458 		maddr = page_address(page);
459 		if (write) {
460 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
461 			set_page_dirty_lock(page);
462 		} else {
463 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
464 		}
465 		put_page(page);
466 
467 		/* error accessing the tracer's buffer */
468 		if (!tags)
469 			break;
470 
471 		len -= tags;
472 		buf += tags;
473 		addr += tags * MTE_GRANULE_SIZE;
474 	}
475 	mmap_read_unlock(mm);
476 
477 	/* return an error if no tags copied */
478 	kiov->iov_len = buf - kiov->iov_base;
479 	if (!kiov->iov_len) {
480 		/* check for error accessing the tracee's address space */
481 		if (ret <= 0)
482 			return -EIO;
483 		else
484 			return -EFAULT;
485 	}
486 
487 	return 0;
488 }
489 
490 /*
491  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
492  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
493  */
494 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
495 			      struct iovec *kiov, unsigned int gup_flags)
496 {
497 	struct mm_struct *mm;
498 	int ret;
499 
500 	mm = get_task_mm(tsk);
501 	if (!mm)
502 		return -EPERM;
503 
504 	if (!tsk->ptrace || (current != tsk->parent) ||
505 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
506 	     !ptracer_capable(tsk, mm->user_ns))) {
507 		mmput(mm);
508 		return -EPERM;
509 	}
510 
511 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
512 	mmput(mm);
513 
514 	return ret;
515 }
516 
517 int mte_ptrace_copy_tags(struct task_struct *child, long request,
518 			 unsigned long addr, unsigned long data)
519 {
520 	int ret;
521 	struct iovec kiov;
522 	struct iovec __user *uiov = (void __user *)data;
523 	unsigned int gup_flags = FOLL_FORCE;
524 
525 	if (!system_supports_mte())
526 		return -EIO;
527 
528 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
529 	    get_user(kiov.iov_len, &uiov->iov_len))
530 		return -EFAULT;
531 
532 	if (request == PTRACE_POKEMTETAGS)
533 		gup_flags |= FOLL_WRITE;
534 
535 	/* align addr to the MTE tag granule */
536 	addr &= MTE_GRANULE_MASK;
537 
538 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
539 	if (!ret)
540 		ret = put_user(kiov.iov_len, &uiov->iov_len);
541 
542 	return ret;
543 }
544 
545 static ssize_t mte_tcf_preferred_show(struct device *dev,
546 				      struct device_attribute *attr, char *buf)
547 {
548 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
549 	case MTE_CTRL_TCF_ASYNC:
550 		return sysfs_emit(buf, "async\n");
551 	case MTE_CTRL_TCF_SYNC:
552 		return sysfs_emit(buf, "sync\n");
553 	case MTE_CTRL_TCF_ASYMM:
554 		return sysfs_emit(buf, "asymm\n");
555 	default:
556 		return sysfs_emit(buf, "???\n");
557 	}
558 }
559 
560 static ssize_t mte_tcf_preferred_store(struct device *dev,
561 				       struct device_attribute *attr,
562 				       const char *buf, size_t count)
563 {
564 	u64 tcf;
565 
566 	if (sysfs_streq(buf, "async"))
567 		tcf = MTE_CTRL_TCF_ASYNC;
568 	else if (sysfs_streq(buf, "sync"))
569 		tcf = MTE_CTRL_TCF_SYNC;
570 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
571 		tcf = MTE_CTRL_TCF_ASYMM;
572 	else
573 		return -EINVAL;
574 
575 	device_lock(dev);
576 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
577 	device_unlock(dev);
578 
579 	return count;
580 }
581 static DEVICE_ATTR_RW(mte_tcf_preferred);
582 
583 static int register_mte_tcf_preferred_sysctl(void)
584 {
585 	unsigned int cpu;
586 
587 	if (!system_supports_mte())
588 		return 0;
589 
590 	for_each_possible_cpu(cpu) {
591 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
592 		device_create_file(get_cpu_device(cpu),
593 				   &dev_attr_mte_tcf_preferred);
594 	}
595 
596 	return 0;
597 }
598 subsys_initcall(register_mte_tcf_preferred_sysctl);
599 
600 /*
601  * Return 0 on success, the number of bytes not probed otherwise.
602  */
603 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
604 {
605 	const char __user *end = uaddr + size;
606 	int err = 0;
607 	char val;
608 
609 	__raw_get_user(val, uaddr, err);
610 	if (err)
611 		return size;
612 
613 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
614 	while (uaddr < end) {
615 		/*
616 		 * A read is sufficient for mte, the caller should have probed
617 		 * for the pte write permission if required.
618 		 */
619 		__raw_get_user(val, uaddr, err);
620 		if (err)
621 			return end - uaddr;
622 		uaddr += MTE_GRANULE_SIZE;
623 	}
624 	(void)val;
625 
626 	return 0;
627 }
628