1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 39 bool check_swap, bool pte_is_tagged) 40 { 41 if (check_swap && is_swap_pte(old_pte)) { 42 swp_entry_t entry = pte_to_swp_entry(old_pte); 43 44 if (!non_swap_entry(entry)) 45 mte_restore_tags(entry, page); 46 } 47 48 if (!pte_is_tagged) 49 return; 50 51 if (try_page_mte_tagging(page)) { 52 mte_clear_page_tags(page_address(page)); 53 set_page_mte_tagged(page); 54 } 55 } 56 57 void mte_sync_tags(pte_t old_pte, pte_t pte) 58 { 59 struct page *page = pte_page(pte); 60 long i, nr_pages = compound_nr(page); 61 bool check_swap = nr_pages == 1; 62 bool pte_is_tagged = pte_tagged(pte); 63 64 /* Early out if there's nothing to do */ 65 if (!check_swap && !pte_is_tagged) 66 return; 67 68 /* if PG_mte_tagged is set, tags have already been initialised */ 69 for (i = 0; i < nr_pages; i++, page++) 70 if (!page_mte_tagged(page)) 71 mte_sync_page_tags(page, old_pte, check_swap, 72 pte_is_tagged); 73 74 /* ensure the tags are visible before the PTE is set */ 75 smp_wmb(); 76 } 77 78 int memcmp_pages(struct page *page1, struct page *page2) 79 { 80 char *addr1, *addr2; 81 int ret; 82 83 addr1 = page_address(page1); 84 addr2 = page_address(page2); 85 ret = memcmp(addr1, addr2, PAGE_SIZE); 86 87 if (!system_supports_mte() || ret) 88 return ret; 89 90 /* 91 * If the page content is identical but at least one of the pages is 92 * tagged, return non-zero to avoid KSM merging. If only one of the 93 * pages is tagged, set_pte_at() may zero or change the tags of the 94 * other page via mte_sync_tags(). 95 */ 96 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 97 return addr1 != addr2; 98 99 return ret; 100 } 101 102 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 103 { 104 /* Enable MTE Sync Mode for EL1. */ 105 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 106 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 107 isb(); 108 109 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 110 } 111 112 #ifdef CONFIG_KASAN_HW_TAGS 113 void mte_enable_kernel_sync(void) 114 { 115 /* 116 * Make sure we enter this function when no PE has set 117 * async mode previously. 118 */ 119 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 120 "MTE async mode enabled system wide!"); 121 122 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 123 } 124 125 void mte_enable_kernel_async(void) 126 { 127 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 128 129 /* 130 * MTE async mode is set system wide by the first PE that 131 * executes this function. 132 * 133 * Note: If in future KASAN acquires a runtime switching 134 * mode in between sync and async, this strategy needs 135 * to be reviewed. 136 */ 137 if (!system_uses_mte_async_or_asymm_mode()) 138 static_branch_enable(&mte_async_or_asymm_mode); 139 } 140 141 void mte_enable_kernel_asymm(void) 142 { 143 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 144 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 145 146 /* 147 * MTE asymm mode behaves as async mode for store 148 * operations. The mode is set system wide by the 149 * first PE that executes this function. 150 * 151 * Note: If in future KASAN acquires a runtime switching 152 * mode in between sync and async, this strategy needs 153 * to be reviewed. 154 */ 155 if (!system_uses_mte_async_or_asymm_mode()) 156 static_branch_enable(&mte_async_or_asymm_mode); 157 } else { 158 /* 159 * If the CPU does not support MTE asymmetric mode the 160 * kernel falls back on synchronous mode which is the 161 * default for kasan=on. 162 */ 163 mte_enable_kernel_sync(); 164 } 165 } 166 #endif 167 168 #ifdef CONFIG_KASAN_HW_TAGS 169 void mte_check_tfsr_el1(void) 170 { 171 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 172 173 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 174 /* 175 * Note: isb() is not required after this direct write 176 * because there is no indirect read subsequent to it 177 * (per ARM DDI 0487F.c table D13-1). 178 */ 179 write_sysreg_s(0, SYS_TFSR_EL1); 180 181 kasan_report_async(); 182 } 183 } 184 #endif 185 186 /* 187 * This is where we actually resolve the system and process MTE mode 188 * configuration into an actual value in SCTLR_EL1 that affects 189 * userspace. 190 */ 191 static void mte_update_sctlr_user(struct task_struct *task) 192 { 193 /* 194 * This must be called with preemption disabled and can only be called 195 * on the current or next task since the CPU must match where the thread 196 * is going to run. The caller is responsible for calling 197 * update_sctlr_el1() later in the same preemption disabled block. 198 */ 199 unsigned long sctlr = task->thread.sctlr_user; 200 unsigned long mte_ctrl = task->thread.mte_ctrl; 201 unsigned long pref, resolved_mte_tcf; 202 203 pref = __this_cpu_read(mte_tcf_preferred); 204 /* 205 * If there is no overlap between the system preferred and 206 * program requested values go with what was requested. 207 */ 208 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 209 sctlr &= ~SCTLR_EL1_TCF0_MASK; 210 /* 211 * Pick an actual setting. The order in which we check for 212 * set bits and map into register values determines our 213 * default order. 214 */ 215 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 216 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 217 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 218 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 219 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 220 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 221 task->thread.sctlr_user = sctlr; 222 } 223 224 static void mte_update_gcr_excl(struct task_struct *task) 225 { 226 /* 227 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 228 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 229 */ 230 if (kasan_hw_tags_enabled()) 231 return; 232 233 write_sysreg_s( 234 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 235 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 236 SYS_GCR_EL1); 237 } 238 239 #ifdef CONFIG_KASAN_HW_TAGS 240 /* Only called from assembly, silence sparse */ 241 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 242 __le32 *updptr, int nr_inst); 243 244 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 245 __le32 *updptr, int nr_inst) 246 { 247 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 248 249 if (kasan_hw_tags_enabled()) 250 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 251 } 252 #endif 253 254 void mte_thread_init_user(void) 255 { 256 if (!system_supports_mte()) 257 return; 258 259 /* clear any pending asynchronous tag fault */ 260 dsb(ish); 261 write_sysreg_s(0, SYS_TFSRE0_EL1); 262 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 263 /* disable tag checking and reset tag generation mask */ 264 set_mte_ctrl(current, 0); 265 } 266 267 void mte_thread_switch(struct task_struct *next) 268 { 269 if (!system_supports_mte()) 270 return; 271 272 mte_update_sctlr_user(next); 273 mte_update_gcr_excl(next); 274 275 /* TCO may not have been disabled on exception entry for the current task. */ 276 mte_disable_tco_entry(next); 277 278 /* 279 * Check if an async tag exception occurred at EL1. 280 * 281 * Note: On the context switch path we rely on the dsb() present 282 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 283 * are synchronized before this point. 284 */ 285 isb(); 286 mte_check_tfsr_el1(); 287 } 288 289 void mte_cpu_setup(void) 290 { 291 u64 rgsr; 292 293 /* 294 * CnP must be enabled only after the MAIR_EL1 register has been set 295 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 296 * lead to the wrong memory type being used for a brief window during 297 * CPU power-up. 298 * 299 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 300 * make sure that is the case. 301 */ 302 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 303 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 304 305 /* Normal Tagged memory type at the corresponding MAIR index */ 306 sysreg_clear_set(mair_el1, 307 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 308 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 309 MT_NORMAL_TAGGED)); 310 311 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 312 313 /* 314 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 315 * RGSR_EL1.SEED must be non-zero for IRG to produce 316 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 317 * must initialize it. 318 */ 319 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 320 SYS_RGSR_EL1_SEED_SHIFT; 321 if (rgsr == 0) 322 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 323 write_sysreg_s(rgsr, SYS_RGSR_EL1); 324 325 /* clear any pending tag check faults in TFSR*_EL1 */ 326 write_sysreg_s(0, SYS_TFSR_EL1); 327 write_sysreg_s(0, SYS_TFSRE0_EL1); 328 329 local_flush_tlb_all(); 330 } 331 332 void mte_suspend_enter(void) 333 { 334 if (!system_supports_mte()) 335 return; 336 337 /* 338 * The barriers are required to guarantee that the indirect writes 339 * to TFSR_EL1 are synchronized before we report the state. 340 */ 341 dsb(nsh); 342 isb(); 343 344 /* Report SYS_TFSR_EL1 before suspend entry */ 345 mte_check_tfsr_el1(); 346 } 347 348 void mte_suspend_exit(void) 349 { 350 if (!system_supports_mte()) 351 return; 352 353 mte_cpu_setup(); 354 } 355 356 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 357 { 358 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 359 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 360 361 if (!system_supports_mte()) 362 return 0; 363 364 if (arg & PR_MTE_TCF_ASYNC) 365 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 366 if (arg & PR_MTE_TCF_SYNC) 367 mte_ctrl |= MTE_CTRL_TCF_SYNC; 368 369 /* 370 * If the system supports it and both sync and async modes are 371 * specified then implicitly enable asymmetric mode. 372 * Userspace could see a mix of both sync and async anyway due 373 * to differing or changing defaults on CPUs. 374 */ 375 if (cpus_have_cap(ARM64_MTE_ASYMM) && 376 (arg & PR_MTE_TCF_ASYNC) && 377 (arg & PR_MTE_TCF_SYNC)) 378 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 379 380 task->thread.mte_ctrl = mte_ctrl; 381 if (task == current) { 382 preempt_disable(); 383 mte_update_sctlr_user(task); 384 mte_update_gcr_excl(task); 385 update_sctlr_el1(task->thread.sctlr_user); 386 preempt_enable(); 387 } 388 389 return 0; 390 } 391 392 long get_mte_ctrl(struct task_struct *task) 393 { 394 unsigned long ret; 395 u64 mte_ctrl = task->thread.mte_ctrl; 396 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 397 SYS_GCR_EL1_EXCL_MASK; 398 399 if (!system_supports_mte()) 400 return 0; 401 402 ret = incl << PR_MTE_TAG_SHIFT; 403 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 404 ret |= PR_MTE_TCF_ASYNC; 405 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 406 ret |= PR_MTE_TCF_SYNC; 407 408 return ret; 409 } 410 411 /* 412 * Access MTE tags in another process' address space as given in mm. Update 413 * the number of tags copied. Return 0 if any tags copied, error otherwise. 414 * Inspired by __access_remote_vm(). 415 */ 416 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 417 struct iovec *kiov, unsigned int gup_flags) 418 { 419 struct vm_area_struct *vma; 420 void __user *buf = kiov->iov_base; 421 size_t len = kiov->iov_len; 422 int ret; 423 int write = gup_flags & FOLL_WRITE; 424 425 if (!access_ok(buf, len)) 426 return -EFAULT; 427 428 if (mmap_read_lock_killable(mm)) 429 return -EIO; 430 431 while (len) { 432 unsigned long tags, offset; 433 void *maddr; 434 struct page *page = NULL; 435 436 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 437 &vma, NULL); 438 if (ret <= 0) 439 break; 440 441 /* 442 * Only copy tags if the page has been mapped as PROT_MTE 443 * (PG_mte_tagged set). Otherwise the tags are not valid and 444 * not accessible to user. Moreover, an mprotect(PROT_MTE) 445 * would cause the existing tags to be cleared if the page 446 * was never mapped with PROT_MTE. 447 */ 448 if (!(vma->vm_flags & VM_MTE)) { 449 ret = -EOPNOTSUPP; 450 put_page(page); 451 break; 452 } 453 WARN_ON_ONCE(!page_mte_tagged(page)); 454 455 /* limit access to the end of the page */ 456 offset = offset_in_page(addr); 457 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 458 459 maddr = page_address(page); 460 if (write) { 461 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 462 set_page_dirty_lock(page); 463 } else { 464 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 465 } 466 put_page(page); 467 468 /* error accessing the tracer's buffer */ 469 if (!tags) 470 break; 471 472 len -= tags; 473 buf += tags; 474 addr += tags * MTE_GRANULE_SIZE; 475 } 476 mmap_read_unlock(mm); 477 478 /* return an error if no tags copied */ 479 kiov->iov_len = buf - kiov->iov_base; 480 if (!kiov->iov_len) { 481 /* check for error accessing the tracee's address space */ 482 if (ret <= 0) 483 return -EIO; 484 else 485 return -EFAULT; 486 } 487 488 return 0; 489 } 490 491 /* 492 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 493 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 494 */ 495 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 496 struct iovec *kiov, unsigned int gup_flags) 497 { 498 struct mm_struct *mm; 499 int ret; 500 501 mm = get_task_mm(tsk); 502 if (!mm) 503 return -EPERM; 504 505 if (!tsk->ptrace || (current != tsk->parent) || 506 ((get_dumpable(mm) != SUID_DUMP_USER) && 507 !ptracer_capable(tsk, mm->user_ns))) { 508 mmput(mm); 509 return -EPERM; 510 } 511 512 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 513 mmput(mm); 514 515 return ret; 516 } 517 518 int mte_ptrace_copy_tags(struct task_struct *child, long request, 519 unsigned long addr, unsigned long data) 520 { 521 int ret; 522 struct iovec kiov; 523 struct iovec __user *uiov = (void __user *)data; 524 unsigned int gup_flags = FOLL_FORCE; 525 526 if (!system_supports_mte()) 527 return -EIO; 528 529 if (get_user(kiov.iov_base, &uiov->iov_base) || 530 get_user(kiov.iov_len, &uiov->iov_len)) 531 return -EFAULT; 532 533 if (request == PTRACE_POKEMTETAGS) 534 gup_flags |= FOLL_WRITE; 535 536 /* align addr to the MTE tag granule */ 537 addr &= MTE_GRANULE_MASK; 538 539 ret = access_remote_tags(child, addr, &kiov, gup_flags); 540 if (!ret) 541 ret = put_user(kiov.iov_len, &uiov->iov_len); 542 543 return ret; 544 } 545 546 static ssize_t mte_tcf_preferred_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 switch (per_cpu(mte_tcf_preferred, dev->id)) { 550 case MTE_CTRL_TCF_ASYNC: 551 return sysfs_emit(buf, "async\n"); 552 case MTE_CTRL_TCF_SYNC: 553 return sysfs_emit(buf, "sync\n"); 554 case MTE_CTRL_TCF_ASYMM: 555 return sysfs_emit(buf, "asymm\n"); 556 default: 557 return sysfs_emit(buf, "???\n"); 558 } 559 } 560 561 static ssize_t mte_tcf_preferred_store(struct device *dev, 562 struct device_attribute *attr, 563 const char *buf, size_t count) 564 { 565 u64 tcf; 566 567 if (sysfs_streq(buf, "async")) 568 tcf = MTE_CTRL_TCF_ASYNC; 569 else if (sysfs_streq(buf, "sync")) 570 tcf = MTE_CTRL_TCF_SYNC; 571 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 572 tcf = MTE_CTRL_TCF_ASYMM; 573 else 574 return -EINVAL; 575 576 device_lock(dev); 577 per_cpu(mte_tcf_preferred, dev->id) = tcf; 578 device_unlock(dev); 579 580 return count; 581 } 582 static DEVICE_ATTR_RW(mte_tcf_preferred); 583 584 static int register_mte_tcf_preferred_sysctl(void) 585 { 586 unsigned int cpu; 587 588 if (!system_supports_mte()) 589 return 0; 590 591 for_each_possible_cpu(cpu) { 592 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 593 device_create_file(get_cpu_device(cpu), 594 &dev_attr_mte_tcf_preferred); 595 } 596 597 return 0; 598 } 599 subsys_initcall(register_mte_tcf_preferred_sysctl); 600 601 /* 602 * Return 0 on success, the number of bytes not probed otherwise. 603 */ 604 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 605 { 606 const char __user *end = uaddr + size; 607 int err = 0; 608 char val; 609 610 __raw_get_user(val, uaddr, err); 611 if (err) 612 return size; 613 614 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 615 while (uaddr < end) { 616 /* 617 * A read is sufficient for mte, the caller should have probed 618 * for the pte write permission if required. 619 */ 620 __raw_get_user(val, uaddr, err); 621 if (err) 622 return end - uaddr; 623 uaddr += MTE_GRANULE_SIZE; 624 } 625 (void)val; 626 627 return 0; 628 } 629