1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uio.h> 19 20 #include <asm/barrier.h> 21 #include <asm/cpufeature.h> 22 #include <asm/mte.h> 23 #include <asm/ptrace.h> 24 #include <asm/sysreg.h> 25 26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 27 28 #ifdef CONFIG_KASAN_HW_TAGS 29 /* 30 * The asynchronous and asymmetric MTE modes have the same behavior for 31 * store operations. This flag is set when either of these modes is enabled. 32 */ 33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 35 #endif 36 37 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 38 bool check_swap, bool pte_is_tagged) 39 { 40 if (check_swap && is_swap_pte(old_pte)) { 41 swp_entry_t entry = pte_to_swp_entry(old_pte); 42 43 if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) 44 return; 45 } 46 47 if (!pte_is_tagged) 48 return; 49 50 page_kasan_tag_reset(page); 51 /* 52 * We need smp_wmb() in between setting the flags and clearing the 53 * tags because if another thread reads page->flags and builds a 54 * tagged address out of it, there is an actual dependency to the 55 * memory access, but on the current thread we do not guarantee that 56 * the new page->flags are visible before the tags were updated. 57 */ 58 smp_wmb(); 59 mte_clear_page_tags(page_address(page)); 60 } 61 62 void mte_sync_tags(pte_t old_pte, pte_t pte) 63 { 64 struct page *page = pte_page(pte); 65 long i, nr_pages = compound_nr(page); 66 bool check_swap = nr_pages == 1; 67 bool pte_is_tagged = pte_tagged(pte); 68 69 /* Early out if there's nothing to do */ 70 if (!check_swap && !pte_is_tagged) 71 return; 72 73 /* if PG_mte_tagged is set, tags have already been initialised */ 74 for (i = 0; i < nr_pages; i++, page++) { 75 if (!test_and_set_bit(PG_mte_tagged, &page->flags)) 76 mte_sync_page_tags(page, old_pte, check_swap, 77 pte_is_tagged); 78 } 79 80 /* ensure the tags are visible before the PTE is set */ 81 smp_wmb(); 82 } 83 84 int memcmp_pages(struct page *page1, struct page *page2) 85 { 86 char *addr1, *addr2; 87 int ret; 88 89 addr1 = page_address(page1); 90 addr2 = page_address(page2); 91 ret = memcmp(addr1, addr2, PAGE_SIZE); 92 93 if (!system_supports_mte() || ret) 94 return ret; 95 96 /* 97 * If the page content is identical but at least one of the pages is 98 * tagged, return non-zero to avoid KSM merging. If only one of the 99 * pages is tagged, set_pte_at() may zero or change the tags of the 100 * other page via mte_sync_tags(). 101 */ 102 if (test_bit(PG_mte_tagged, &page1->flags) || 103 test_bit(PG_mte_tagged, &page2->flags)) 104 return addr1 != addr2; 105 106 return ret; 107 } 108 109 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 110 { 111 /* Enable MTE Sync Mode for EL1. */ 112 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf); 113 isb(); 114 115 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 116 } 117 118 #ifdef CONFIG_KASAN_HW_TAGS 119 void mte_enable_kernel_sync(void) 120 { 121 /* 122 * Make sure we enter this function when no PE has set 123 * async mode previously. 124 */ 125 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 126 "MTE async mode enabled system wide!"); 127 128 __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC); 129 } 130 131 void mte_enable_kernel_async(void) 132 { 133 __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC); 134 135 /* 136 * MTE async mode is set system wide by the first PE that 137 * executes this function. 138 * 139 * Note: If in future KASAN acquires a runtime switching 140 * mode in between sync and async, this strategy needs 141 * to be reviewed. 142 */ 143 if (!system_uses_mte_async_or_asymm_mode()) 144 static_branch_enable(&mte_async_or_asymm_mode); 145 } 146 147 void mte_enable_kernel_asymm(void) 148 { 149 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 150 __mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM); 151 152 /* 153 * MTE asymm mode behaves as async mode for store 154 * operations. The mode is set system wide by the 155 * first PE that executes this function. 156 * 157 * Note: If in future KASAN acquires a runtime switching 158 * mode in between sync and async, this strategy needs 159 * to be reviewed. 160 */ 161 if (!system_uses_mte_async_or_asymm_mode()) 162 static_branch_enable(&mte_async_or_asymm_mode); 163 } else { 164 /* 165 * If the CPU does not support MTE asymmetric mode the 166 * kernel falls back on synchronous mode which is the 167 * default for kasan=on. 168 */ 169 mte_enable_kernel_sync(); 170 } 171 } 172 #endif 173 174 #ifdef CONFIG_KASAN_HW_TAGS 175 void mte_check_tfsr_el1(void) 176 { 177 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 178 179 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 180 /* 181 * Note: isb() is not required after this direct write 182 * because there is no indirect read subsequent to it 183 * (per ARM DDI 0487F.c table D13-1). 184 */ 185 write_sysreg_s(0, SYS_TFSR_EL1); 186 187 kasan_report_async(); 188 } 189 } 190 #endif 191 192 /* 193 * This is where we actually resolve the system and process MTE mode 194 * configuration into an actual value in SCTLR_EL1 that affects 195 * userspace. 196 */ 197 static void mte_update_sctlr_user(struct task_struct *task) 198 { 199 /* 200 * This must be called with preemption disabled and can only be called 201 * on the current or next task since the CPU must match where the thread 202 * is going to run. The caller is responsible for calling 203 * update_sctlr_el1() later in the same preemption disabled block. 204 */ 205 unsigned long sctlr = task->thread.sctlr_user; 206 unsigned long mte_ctrl = task->thread.mte_ctrl; 207 unsigned long pref, resolved_mte_tcf; 208 209 pref = __this_cpu_read(mte_tcf_preferred); 210 /* 211 * If there is no overlap between the system preferred and 212 * program requested values go with what was requested. 213 */ 214 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 215 sctlr &= ~SCTLR_EL1_TCF0_MASK; 216 /* 217 * Pick an actual setting. The order in which we check for 218 * set bits and map into register values determines our 219 * default order. 220 */ 221 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 222 sctlr |= SCTLR_EL1_TCF0_ASYMM; 223 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 224 sctlr |= SCTLR_EL1_TCF0_ASYNC; 225 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 226 sctlr |= SCTLR_EL1_TCF0_SYNC; 227 task->thread.sctlr_user = sctlr; 228 } 229 230 static void mte_update_gcr_excl(struct task_struct *task) 231 { 232 /* 233 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 234 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 235 */ 236 if (kasan_hw_tags_enabled()) 237 return; 238 239 write_sysreg_s( 240 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 241 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 242 SYS_GCR_EL1); 243 } 244 245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 246 __le32 *updptr, int nr_inst) 247 { 248 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 249 250 if (kasan_hw_tags_enabled()) 251 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 252 } 253 254 void mte_thread_init_user(void) 255 { 256 if (!system_supports_mte()) 257 return; 258 259 /* clear any pending asynchronous tag fault */ 260 dsb(ish); 261 write_sysreg_s(0, SYS_TFSRE0_EL1); 262 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 263 /* disable tag checking and reset tag generation mask */ 264 set_mte_ctrl(current, 0); 265 } 266 267 void mte_thread_switch(struct task_struct *next) 268 { 269 if (!system_supports_mte()) 270 return; 271 272 mte_update_sctlr_user(next); 273 mte_update_gcr_excl(next); 274 275 /* TCO may not have been disabled on exception entry for the current task. */ 276 mte_disable_tco_entry(next); 277 278 /* 279 * Check if an async tag exception occurred at EL1. 280 * 281 * Note: On the context switch path we rely on the dsb() present 282 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 283 * are synchronized before this point. 284 */ 285 isb(); 286 mte_check_tfsr_el1(); 287 } 288 289 void mte_suspend_enter(void) 290 { 291 if (!system_supports_mte()) 292 return; 293 294 /* 295 * The barriers are required to guarantee that the indirect writes 296 * to TFSR_EL1 are synchronized before we report the state. 297 */ 298 dsb(nsh); 299 isb(); 300 301 /* Report SYS_TFSR_EL1 before suspend entry */ 302 mte_check_tfsr_el1(); 303 } 304 305 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 306 { 307 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 308 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 309 310 if (!system_supports_mte()) 311 return 0; 312 313 if (arg & PR_MTE_TCF_ASYNC) 314 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 315 if (arg & PR_MTE_TCF_SYNC) 316 mte_ctrl |= MTE_CTRL_TCF_SYNC; 317 318 /* 319 * If the system supports it and both sync and async modes are 320 * specified then implicitly enable asymmetric mode. 321 * Userspace could see a mix of both sync and async anyway due 322 * to differing or changing defaults on CPUs. 323 */ 324 if (cpus_have_cap(ARM64_MTE_ASYMM) && 325 (arg & PR_MTE_TCF_ASYNC) && 326 (arg & PR_MTE_TCF_SYNC)) 327 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 328 329 task->thread.mte_ctrl = mte_ctrl; 330 if (task == current) { 331 preempt_disable(); 332 mte_update_sctlr_user(task); 333 mte_update_gcr_excl(task); 334 update_sctlr_el1(task->thread.sctlr_user); 335 preempt_enable(); 336 } 337 338 return 0; 339 } 340 341 long get_mte_ctrl(struct task_struct *task) 342 { 343 unsigned long ret; 344 u64 mte_ctrl = task->thread.mte_ctrl; 345 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 346 SYS_GCR_EL1_EXCL_MASK; 347 348 if (!system_supports_mte()) 349 return 0; 350 351 ret = incl << PR_MTE_TAG_SHIFT; 352 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 353 ret |= PR_MTE_TCF_ASYNC; 354 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 355 ret |= PR_MTE_TCF_SYNC; 356 357 return ret; 358 } 359 360 /* 361 * Access MTE tags in another process' address space as given in mm. Update 362 * the number of tags copied. Return 0 if any tags copied, error otherwise. 363 * Inspired by __access_remote_vm(). 364 */ 365 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 366 struct iovec *kiov, unsigned int gup_flags) 367 { 368 struct vm_area_struct *vma; 369 void __user *buf = kiov->iov_base; 370 size_t len = kiov->iov_len; 371 int ret; 372 int write = gup_flags & FOLL_WRITE; 373 374 if (!access_ok(buf, len)) 375 return -EFAULT; 376 377 if (mmap_read_lock_killable(mm)) 378 return -EIO; 379 380 while (len) { 381 unsigned long tags, offset; 382 void *maddr; 383 struct page *page = NULL; 384 385 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 386 &vma, NULL); 387 if (ret <= 0) 388 break; 389 390 /* 391 * Only copy tags if the page has been mapped as PROT_MTE 392 * (PG_mte_tagged set). Otherwise the tags are not valid and 393 * not accessible to user. Moreover, an mprotect(PROT_MTE) 394 * would cause the existing tags to be cleared if the page 395 * was never mapped with PROT_MTE. 396 */ 397 if (!(vma->vm_flags & VM_MTE)) { 398 ret = -EOPNOTSUPP; 399 put_page(page); 400 break; 401 } 402 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); 403 404 /* limit access to the end of the page */ 405 offset = offset_in_page(addr); 406 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 407 408 maddr = page_address(page); 409 if (write) { 410 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 411 set_page_dirty_lock(page); 412 } else { 413 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 414 } 415 put_page(page); 416 417 /* error accessing the tracer's buffer */ 418 if (!tags) 419 break; 420 421 len -= tags; 422 buf += tags; 423 addr += tags * MTE_GRANULE_SIZE; 424 } 425 mmap_read_unlock(mm); 426 427 /* return an error if no tags copied */ 428 kiov->iov_len = buf - kiov->iov_base; 429 if (!kiov->iov_len) { 430 /* check for error accessing the tracee's address space */ 431 if (ret <= 0) 432 return -EIO; 433 else 434 return -EFAULT; 435 } 436 437 return 0; 438 } 439 440 /* 441 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 442 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 443 */ 444 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 445 struct iovec *kiov, unsigned int gup_flags) 446 { 447 struct mm_struct *mm; 448 int ret; 449 450 mm = get_task_mm(tsk); 451 if (!mm) 452 return -EPERM; 453 454 if (!tsk->ptrace || (current != tsk->parent) || 455 ((get_dumpable(mm) != SUID_DUMP_USER) && 456 !ptracer_capable(tsk, mm->user_ns))) { 457 mmput(mm); 458 return -EPERM; 459 } 460 461 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 462 mmput(mm); 463 464 return ret; 465 } 466 467 int mte_ptrace_copy_tags(struct task_struct *child, long request, 468 unsigned long addr, unsigned long data) 469 { 470 int ret; 471 struct iovec kiov; 472 struct iovec __user *uiov = (void __user *)data; 473 unsigned int gup_flags = FOLL_FORCE; 474 475 if (!system_supports_mte()) 476 return -EIO; 477 478 if (get_user(kiov.iov_base, &uiov->iov_base) || 479 get_user(kiov.iov_len, &uiov->iov_len)) 480 return -EFAULT; 481 482 if (request == PTRACE_POKEMTETAGS) 483 gup_flags |= FOLL_WRITE; 484 485 /* align addr to the MTE tag granule */ 486 addr &= MTE_GRANULE_MASK; 487 488 ret = access_remote_tags(child, addr, &kiov, gup_flags); 489 if (!ret) 490 ret = put_user(kiov.iov_len, &uiov->iov_len); 491 492 return ret; 493 } 494 495 static ssize_t mte_tcf_preferred_show(struct device *dev, 496 struct device_attribute *attr, char *buf) 497 { 498 switch (per_cpu(mte_tcf_preferred, dev->id)) { 499 case MTE_CTRL_TCF_ASYNC: 500 return sysfs_emit(buf, "async\n"); 501 case MTE_CTRL_TCF_SYNC: 502 return sysfs_emit(buf, "sync\n"); 503 case MTE_CTRL_TCF_ASYMM: 504 return sysfs_emit(buf, "asymm\n"); 505 default: 506 return sysfs_emit(buf, "???\n"); 507 } 508 } 509 510 static ssize_t mte_tcf_preferred_store(struct device *dev, 511 struct device_attribute *attr, 512 const char *buf, size_t count) 513 { 514 u64 tcf; 515 516 if (sysfs_streq(buf, "async")) 517 tcf = MTE_CTRL_TCF_ASYNC; 518 else if (sysfs_streq(buf, "sync")) 519 tcf = MTE_CTRL_TCF_SYNC; 520 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 521 tcf = MTE_CTRL_TCF_ASYMM; 522 else 523 return -EINVAL; 524 525 device_lock(dev); 526 per_cpu(mte_tcf_preferred, dev->id) = tcf; 527 device_unlock(dev); 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(mte_tcf_preferred); 532 533 static int register_mte_tcf_preferred_sysctl(void) 534 { 535 unsigned int cpu; 536 537 if (!system_supports_mte()) 538 return 0; 539 540 for_each_possible_cpu(cpu) { 541 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 542 device_create_file(get_cpu_device(cpu), 543 &dev_attr_mte_tcf_preferred); 544 } 545 546 return 0; 547 } 548 subsys_initcall(register_mte_tcf_preferred_sysctl); 549