xref: /openbmc/linux/arch/arm64/kernel/mte.c (revision 141e5239)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uio.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/mte.h>
23 #include <asm/ptrace.h>
24 #include <asm/sysreg.h>
25 
26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
27 
28 #ifdef CONFIG_KASAN_HW_TAGS
29 /*
30  * The asynchronous and asymmetric MTE modes have the same behavior for
31  * store operations. This flag is set when either of these modes is enabled.
32  */
33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
35 #endif
36 
37 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
38 			       bool check_swap, bool pte_is_tagged)
39 {
40 	if (check_swap && is_swap_pte(old_pte)) {
41 		swp_entry_t entry = pte_to_swp_entry(old_pte);
42 
43 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
44 			return;
45 	}
46 
47 	if (!pte_is_tagged)
48 		return;
49 
50 	page_kasan_tag_reset(page);
51 	/*
52 	 * We need smp_wmb() in between setting the flags and clearing the
53 	 * tags because if another thread reads page->flags and builds a
54 	 * tagged address out of it, there is an actual dependency to the
55 	 * memory access, but on the current thread we do not guarantee that
56 	 * the new page->flags are visible before the tags were updated.
57 	 */
58 	smp_wmb();
59 	mte_clear_page_tags(page_address(page));
60 }
61 
62 void mte_sync_tags(pte_t old_pte, pte_t pte)
63 {
64 	struct page *page = pte_page(pte);
65 	long i, nr_pages = compound_nr(page);
66 	bool check_swap = nr_pages == 1;
67 	bool pte_is_tagged = pte_tagged(pte);
68 
69 	/* Early out if there's nothing to do */
70 	if (!check_swap && !pte_is_tagged)
71 		return;
72 
73 	/* if PG_mte_tagged is set, tags have already been initialised */
74 	for (i = 0; i < nr_pages; i++, page++) {
75 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
76 			mte_sync_page_tags(page, old_pte, check_swap,
77 					   pte_is_tagged);
78 	}
79 
80 	/* ensure the tags are visible before the PTE is set */
81 	smp_wmb();
82 }
83 
84 int memcmp_pages(struct page *page1, struct page *page2)
85 {
86 	char *addr1, *addr2;
87 	int ret;
88 
89 	addr1 = page_address(page1);
90 	addr2 = page_address(page2);
91 	ret = memcmp(addr1, addr2, PAGE_SIZE);
92 
93 	if (!system_supports_mte() || ret)
94 		return ret;
95 
96 	/*
97 	 * If the page content is identical but at least one of the pages is
98 	 * tagged, return non-zero to avoid KSM merging. If only one of the
99 	 * pages is tagged, set_pte_at() may zero or change the tags of the
100 	 * other page via mte_sync_tags().
101 	 */
102 	if (test_bit(PG_mte_tagged, &page1->flags) ||
103 	    test_bit(PG_mte_tagged, &page2->flags))
104 		return addr1 != addr2;
105 
106 	return ret;
107 }
108 
109 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
110 {
111 	/* Enable MTE Sync Mode for EL1. */
112 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
113 	isb();
114 
115 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
116 }
117 
118 #ifdef CONFIG_KASAN_HW_TAGS
119 void mte_enable_kernel_sync(void)
120 {
121 	/*
122 	 * Make sure we enter this function when no PE has set
123 	 * async mode previously.
124 	 */
125 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
126 			"MTE async mode enabled system wide!");
127 
128 	__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
129 }
130 
131 void mte_enable_kernel_async(void)
132 {
133 	__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
134 
135 	/*
136 	 * MTE async mode is set system wide by the first PE that
137 	 * executes this function.
138 	 *
139 	 * Note: If in future KASAN acquires a runtime switching
140 	 * mode in between sync and async, this strategy needs
141 	 * to be reviewed.
142 	 */
143 	if (!system_uses_mte_async_or_asymm_mode())
144 		static_branch_enable(&mte_async_or_asymm_mode);
145 }
146 
147 void mte_enable_kernel_asymm(void)
148 {
149 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
150 		__mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
151 
152 		/*
153 		 * MTE asymm mode behaves as async mode for store
154 		 * operations. The mode is set system wide by the
155 		 * first PE that executes this function.
156 		 *
157 		 * Note: If in future KASAN acquires a runtime switching
158 		 * mode in between sync and async, this strategy needs
159 		 * to be reviewed.
160 		 */
161 		if (!system_uses_mte_async_or_asymm_mode())
162 			static_branch_enable(&mte_async_or_asymm_mode);
163 	} else {
164 		/*
165 		 * If the CPU does not support MTE asymmetric mode the
166 		 * kernel falls back on synchronous mode which is the
167 		 * default for kasan=on.
168 		 */
169 		mte_enable_kernel_sync();
170 	}
171 }
172 #endif
173 
174 #ifdef CONFIG_KASAN_HW_TAGS
175 void mte_check_tfsr_el1(void)
176 {
177 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
178 
179 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
180 		/*
181 		 * Note: isb() is not required after this direct write
182 		 * because there is no indirect read subsequent to it
183 		 * (per ARM DDI 0487F.c table D13-1).
184 		 */
185 		write_sysreg_s(0, SYS_TFSR_EL1);
186 
187 		kasan_report_async();
188 	}
189 }
190 #endif
191 
192 /*
193  * This is where we actually resolve the system and process MTE mode
194  * configuration into an actual value in SCTLR_EL1 that affects
195  * userspace.
196  */
197 static void mte_update_sctlr_user(struct task_struct *task)
198 {
199 	/*
200 	 * This must be called with preemption disabled and can only be called
201 	 * on the current or next task since the CPU must match where the thread
202 	 * is going to run. The caller is responsible for calling
203 	 * update_sctlr_el1() later in the same preemption disabled block.
204 	 */
205 	unsigned long sctlr = task->thread.sctlr_user;
206 	unsigned long mte_ctrl = task->thread.mte_ctrl;
207 	unsigned long pref, resolved_mte_tcf;
208 
209 	pref = __this_cpu_read(mte_tcf_preferred);
210 	/*
211 	 * If there is no overlap between the system preferred and
212 	 * program requested values go with what was requested.
213 	 */
214 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
215 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
216 	/*
217 	 * Pick an actual setting. The order in which we check for
218 	 * set bits and map into register values determines our
219 	 * default order.
220 	 */
221 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
222 		sctlr |= SCTLR_EL1_TCF0_ASYMM;
223 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
224 		sctlr |= SCTLR_EL1_TCF0_ASYNC;
225 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
226 		sctlr |= SCTLR_EL1_TCF0_SYNC;
227 	task->thread.sctlr_user = sctlr;
228 }
229 
230 static void mte_update_gcr_excl(struct task_struct *task)
231 {
232 	/*
233 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
234 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
235 	 */
236 	if (kasan_hw_tags_enabled())
237 		return;
238 
239 	write_sysreg_s(
240 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
241 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
242 		SYS_GCR_EL1);
243 }
244 
245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
246 				 __le32 *updptr, int nr_inst)
247 {
248 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
249 
250 	if (kasan_hw_tags_enabled())
251 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
252 }
253 
254 void mte_thread_init_user(void)
255 {
256 	if (!system_supports_mte())
257 		return;
258 
259 	/* clear any pending asynchronous tag fault */
260 	dsb(ish);
261 	write_sysreg_s(0, SYS_TFSRE0_EL1);
262 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
263 	/* disable tag checking and reset tag generation mask */
264 	set_mte_ctrl(current, 0);
265 }
266 
267 void mte_thread_switch(struct task_struct *next)
268 {
269 	if (!system_supports_mte())
270 		return;
271 
272 	mte_update_sctlr_user(next);
273 	mte_update_gcr_excl(next);
274 
275 	/* TCO may not have been disabled on exception entry for the current task. */
276 	mte_disable_tco_entry(next);
277 
278 	/*
279 	 * Check if an async tag exception occurred at EL1.
280 	 *
281 	 * Note: On the context switch path we rely on the dsb() present
282 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
283 	 * are synchronized before this point.
284 	 */
285 	isb();
286 	mte_check_tfsr_el1();
287 }
288 
289 void mte_suspend_enter(void)
290 {
291 	if (!system_supports_mte())
292 		return;
293 
294 	/*
295 	 * The barriers are required to guarantee that the indirect writes
296 	 * to TFSR_EL1 are synchronized before we report the state.
297 	 */
298 	dsb(nsh);
299 	isb();
300 
301 	/* Report SYS_TFSR_EL1 before suspend entry */
302 	mte_check_tfsr_el1();
303 }
304 
305 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
306 {
307 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
308 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
309 
310 	if (!system_supports_mte())
311 		return 0;
312 
313 	if (arg & PR_MTE_TCF_ASYNC)
314 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
315 	if (arg & PR_MTE_TCF_SYNC)
316 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
317 
318 	/*
319 	 * If the system supports it and both sync and async modes are
320 	 * specified then implicitly enable asymmetric mode.
321 	 * Userspace could see a mix of both sync and async anyway due
322 	 * to differing or changing defaults on CPUs.
323 	 */
324 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
325 	    (arg & PR_MTE_TCF_ASYNC) &&
326 	    (arg & PR_MTE_TCF_SYNC))
327 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
328 
329 	task->thread.mte_ctrl = mte_ctrl;
330 	if (task == current) {
331 		preempt_disable();
332 		mte_update_sctlr_user(task);
333 		mte_update_gcr_excl(task);
334 		update_sctlr_el1(task->thread.sctlr_user);
335 		preempt_enable();
336 	}
337 
338 	return 0;
339 }
340 
341 long get_mte_ctrl(struct task_struct *task)
342 {
343 	unsigned long ret;
344 	u64 mte_ctrl = task->thread.mte_ctrl;
345 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
346 		   SYS_GCR_EL1_EXCL_MASK;
347 
348 	if (!system_supports_mte())
349 		return 0;
350 
351 	ret = incl << PR_MTE_TAG_SHIFT;
352 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
353 		ret |= PR_MTE_TCF_ASYNC;
354 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
355 		ret |= PR_MTE_TCF_SYNC;
356 
357 	return ret;
358 }
359 
360 /*
361  * Access MTE tags in another process' address space as given in mm. Update
362  * the number of tags copied. Return 0 if any tags copied, error otherwise.
363  * Inspired by __access_remote_vm().
364  */
365 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
366 				struct iovec *kiov, unsigned int gup_flags)
367 {
368 	struct vm_area_struct *vma;
369 	void __user *buf = kiov->iov_base;
370 	size_t len = kiov->iov_len;
371 	int ret;
372 	int write = gup_flags & FOLL_WRITE;
373 
374 	if (!access_ok(buf, len))
375 		return -EFAULT;
376 
377 	if (mmap_read_lock_killable(mm))
378 		return -EIO;
379 
380 	while (len) {
381 		unsigned long tags, offset;
382 		void *maddr;
383 		struct page *page = NULL;
384 
385 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
386 					    &vma, NULL);
387 		if (ret <= 0)
388 			break;
389 
390 		/*
391 		 * Only copy tags if the page has been mapped as PROT_MTE
392 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
393 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
394 		 * would cause the existing tags to be cleared if the page
395 		 * was never mapped with PROT_MTE.
396 		 */
397 		if (!(vma->vm_flags & VM_MTE)) {
398 			ret = -EOPNOTSUPP;
399 			put_page(page);
400 			break;
401 		}
402 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
403 
404 		/* limit access to the end of the page */
405 		offset = offset_in_page(addr);
406 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
407 
408 		maddr = page_address(page);
409 		if (write) {
410 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
411 			set_page_dirty_lock(page);
412 		} else {
413 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
414 		}
415 		put_page(page);
416 
417 		/* error accessing the tracer's buffer */
418 		if (!tags)
419 			break;
420 
421 		len -= tags;
422 		buf += tags;
423 		addr += tags * MTE_GRANULE_SIZE;
424 	}
425 	mmap_read_unlock(mm);
426 
427 	/* return an error if no tags copied */
428 	kiov->iov_len = buf - kiov->iov_base;
429 	if (!kiov->iov_len) {
430 		/* check for error accessing the tracee's address space */
431 		if (ret <= 0)
432 			return -EIO;
433 		else
434 			return -EFAULT;
435 	}
436 
437 	return 0;
438 }
439 
440 /*
441  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
442  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
443  */
444 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
445 			      struct iovec *kiov, unsigned int gup_flags)
446 {
447 	struct mm_struct *mm;
448 	int ret;
449 
450 	mm = get_task_mm(tsk);
451 	if (!mm)
452 		return -EPERM;
453 
454 	if (!tsk->ptrace || (current != tsk->parent) ||
455 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
456 	     !ptracer_capable(tsk, mm->user_ns))) {
457 		mmput(mm);
458 		return -EPERM;
459 	}
460 
461 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
462 	mmput(mm);
463 
464 	return ret;
465 }
466 
467 int mte_ptrace_copy_tags(struct task_struct *child, long request,
468 			 unsigned long addr, unsigned long data)
469 {
470 	int ret;
471 	struct iovec kiov;
472 	struct iovec __user *uiov = (void __user *)data;
473 	unsigned int gup_flags = FOLL_FORCE;
474 
475 	if (!system_supports_mte())
476 		return -EIO;
477 
478 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
479 	    get_user(kiov.iov_len, &uiov->iov_len))
480 		return -EFAULT;
481 
482 	if (request == PTRACE_POKEMTETAGS)
483 		gup_flags |= FOLL_WRITE;
484 
485 	/* align addr to the MTE tag granule */
486 	addr &= MTE_GRANULE_MASK;
487 
488 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
489 	if (!ret)
490 		ret = put_user(kiov.iov_len, &uiov->iov_len);
491 
492 	return ret;
493 }
494 
495 static ssize_t mte_tcf_preferred_show(struct device *dev,
496 				      struct device_attribute *attr, char *buf)
497 {
498 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
499 	case MTE_CTRL_TCF_ASYNC:
500 		return sysfs_emit(buf, "async\n");
501 	case MTE_CTRL_TCF_SYNC:
502 		return sysfs_emit(buf, "sync\n");
503 	case MTE_CTRL_TCF_ASYMM:
504 		return sysfs_emit(buf, "asymm\n");
505 	default:
506 		return sysfs_emit(buf, "???\n");
507 	}
508 }
509 
510 static ssize_t mte_tcf_preferred_store(struct device *dev,
511 				       struct device_attribute *attr,
512 				       const char *buf, size_t count)
513 {
514 	u64 tcf;
515 
516 	if (sysfs_streq(buf, "async"))
517 		tcf = MTE_CTRL_TCF_ASYNC;
518 	else if (sysfs_streq(buf, "sync"))
519 		tcf = MTE_CTRL_TCF_SYNC;
520 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
521 		tcf = MTE_CTRL_TCF_ASYMM;
522 	else
523 		return -EINVAL;
524 
525 	device_lock(dev);
526 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
527 	device_unlock(dev);
528 
529 	return count;
530 }
531 static DEVICE_ATTR_RW(mte_tcf_preferred);
532 
533 static int register_mte_tcf_preferred_sysctl(void)
534 {
535 	unsigned int cpu;
536 
537 	if (!system_supports_mte())
538 		return 0;
539 
540 	for_each_possible_cpu(cpu) {
541 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
542 		device_create_file(get_cpu_device(cpu),
543 				   &dev_attr_mte_tcf_preferred);
544 	}
545 
546 	return 0;
547 }
548 subsys_initcall(register_mte_tcf_preferred_sysctl);
549