1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uio.h> 19 20 #include <asm/barrier.h> 21 #include <asm/cpufeature.h> 22 #include <asm/mte.h> 23 #include <asm/ptrace.h> 24 #include <asm/sysreg.h> 25 26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 27 28 #ifdef CONFIG_KASAN_HW_TAGS 29 /* 30 * The asynchronous and asymmetric MTE modes have the same behavior for 31 * store operations. This flag is set when either of these modes is enabled. 32 */ 33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 35 #endif 36 37 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 38 bool check_swap, bool pte_is_tagged) 39 { 40 if (check_swap && is_swap_pte(old_pte)) { 41 swp_entry_t entry = pte_to_swp_entry(old_pte); 42 43 if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) 44 return; 45 } 46 47 if (!pte_is_tagged) 48 return; 49 50 page_kasan_tag_reset(page); 51 /* 52 * We need smp_wmb() in between setting the flags and clearing the 53 * tags because if another thread reads page->flags and builds a 54 * tagged address out of it, there is an actual dependency to the 55 * memory access, but on the current thread we do not guarantee that 56 * the new page->flags are visible before the tags were updated. 57 */ 58 smp_wmb(); 59 mte_clear_page_tags(page_address(page)); 60 } 61 62 void mte_sync_tags(pte_t old_pte, pte_t pte) 63 { 64 struct page *page = pte_page(pte); 65 long i, nr_pages = compound_nr(page); 66 bool check_swap = nr_pages == 1; 67 bool pte_is_tagged = pte_tagged(pte); 68 69 /* Early out if there's nothing to do */ 70 if (!check_swap && !pte_is_tagged) 71 return; 72 73 /* if PG_mte_tagged is set, tags have already been initialised */ 74 for (i = 0; i < nr_pages; i++, page++) { 75 if (!test_and_set_bit(PG_mte_tagged, &page->flags)) 76 mte_sync_page_tags(page, old_pte, check_swap, 77 pte_is_tagged); 78 } 79 } 80 81 int memcmp_pages(struct page *page1, struct page *page2) 82 { 83 char *addr1, *addr2; 84 int ret; 85 86 addr1 = page_address(page1); 87 addr2 = page_address(page2); 88 ret = memcmp(addr1, addr2, PAGE_SIZE); 89 90 if (!system_supports_mte() || ret) 91 return ret; 92 93 /* 94 * If the page content is identical but at least one of the pages is 95 * tagged, return non-zero to avoid KSM merging. If only one of the 96 * pages is tagged, set_pte_at() may zero or change the tags of the 97 * other page via mte_sync_tags(). 98 */ 99 if (test_bit(PG_mte_tagged, &page1->flags) || 100 test_bit(PG_mte_tagged, &page2->flags)) 101 return addr1 != addr2; 102 103 return ret; 104 } 105 106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 107 { 108 /* Enable MTE Sync Mode for EL1. */ 109 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf); 110 isb(); 111 112 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 113 } 114 115 #ifdef CONFIG_KASAN_HW_TAGS 116 void mte_enable_kernel_sync(void) 117 { 118 /* 119 * Make sure we enter this function when no PE has set 120 * async mode previously. 121 */ 122 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 123 "MTE async mode enabled system wide!"); 124 125 __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC); 126 } 127 128 void mte_enable_kernel_async(void) 129 { 130 __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC); 131 132 /* 133 * MTE async mode is set system wide by the first PE that 134 * executes this function. 135 * 136 * Note: If in future KASAN acquires a runtime switching 137 * mode in between sync and async, this strategy needs 138 * to be reviewed. 139 */ 140 if (!system_uses_mte_async_or_asymm_mode()) 141 static_branch_enable(&mte_async_or_asymm_mode); 142 } 143 144 void mte_enable_kernel_asymm(void) 145 { 146 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 147 __mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM); 148 149 /* 150 * MTE asymm mode behaves as async mode for store 151 * operations. The mode is set system wide by the 152 * first PE that executes this function. 153 * 154 * Note: If in future KASAN acquires a runtime switching 155 * mode in between sync and async, this strategy needs 156 * to be reviewed. 157 */ 158 if (!system_uses_mte_async_or_asymm_mode()) 159 static_branch_enable(&mte_async_or_asymm_mode); 160 } else { 161 /* 162 * If the CPU does not support MTE asymmetric mode the 163 * kernel falls back on synchronous mode which is the 164 * default for kasan=on. 165 */ 166 mte_enable_kernel_sync(); 167 } 168 } 169 #endif 170 171 #ifdef CONFIG_KASAN_HW_TAGS 172 void mte_check_tfsr_el1(void) 173 { 174 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 175 176 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 177 /* 178 * Note: isb() is not required after this direct write 179 * because there is no indirect read subsequent to it 180 * (per ARM DDI 0487F.c table D13-1). 181 */ 182 write_sysreg_s(0, SYS_TFSR_EL1); 183 184 kasan_report_async(); 185 } 186 } 187 #endif 188 189 /* 190 * This is where we actually resolve the system and process MTE mode 191 * configuration into an actual value in SCTLR_EL1 that affects 192 * userspace. 193 */ 194 static void mte_update_sctlr_user(struct task_struct *task) 195 { 196 /* 197 * This must be called with preemption disabled and can only be called 198 * on the current or next task since the CPU must match where the thread 199 * is going to run. The caller is responsible for calling 200 * update_sctlr_el1() later in the same preemption disabled block. 201 */ 202 unsigned long sctlr = task->thread.sctlr_user; 203 unsigned long mte_ctrl = task->thread.mte_ctrl; 204 unsigned long pref, resolved_mte_tcf; 205 206 pref = __this_cpu_read(mte_tcf_preferred); 207 /* 208 * If there is no overlap between the system preferred and 209 * program requested values go with what was requested. 210 */ 211 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 212 sctlr &= ~SCTLR_EL1_TCF0_MASK; 213 /* 214 * Pick an actual setting. The order in which we check for 215 * set bits and map into register values determines our 216 * default order. 217 */ 218 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 219 sctlr |= SCTLR_EL1_TCF0_ASYMM; 220 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 221 sctlr |= SCTLR_EL1_TCF0_ASYNC; 222 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 223 sctlr |= SCTLR_EL1_TCF0_SYNC; 224 task->thread.sctlr_user = sctlr; 225 } 226 227 static void mte_update_gcr_excl(struct task_struct *task) 228 { 229 /* 230 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 231 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 232 */ 233 if (kasan_hw_tags_enabled()) 234 return; 235 236 write_sysreg_s( 237 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 238 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 239 SYS_GCR_EL1); 240 } 241 242 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 243 __le32 *updptr, int nr_inst) 244 { 245 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 246 247 if (kasan_hw_tags_enabled()) 248 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 249 } 250 251 void mte_thread_init_user(void) 252 { 253 if (!system_supports_mte()) 254 return; 255 256 /* clear any pending asynchronous tag fault */ 257 dsb(ish); 258 write_sysreg_s(0, SYS_TFSRE0_EL1); 259 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 260 /* disable tag checking and reset tag generation mask */ 261 set_mte_ctrl(current, 0); 262 } 263 264 void mte_thread_switch(struct task_struct *next) 265 { 266 if (!system_supports_mte()) 267 return; 268 269 mte_update_sctlr_user(next); 270 mte_update_gcr_excl(next); 271 272 /* TCO may not have been disabled on exception entry for the current task. */ 273 mte_disable_tco_entry(next); 274 275 /* 276 * Check if an async tag exception occurred at EL1. 277 * 278 * Note: On the context switch path we rely on the dsb() present 279 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 280 * are synchronized before this point. 281 */ 282 isb(); 283 mte_check_tfsr_el1(); 284 } 285 286 void mte_suspend_enter(void) 287 { 288 if (!system_supports_mte()) 289 return; 290 291 /* 292 * The barriers are required to guarantee that the indirect writes 293 * to TFSR_EL1 are synchronized before we report the state. 294 */ 295 dsb(nsh); 296 isb(); 297 298 /* Report SYS_TFSR_EL1 before suspend entry */ 299 mte_check_tfsr_el1(); 300 } 301 302 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 303 { 304 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 305 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 306 307 if (!system_supports_mte()) 308 return 0; 309 310 if (arg & PR_MTE_TCF_ASYNC) 311 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 312 if (arg & PR_MTE_TCF_SYNC) 313 mte_ctrl |= MTE_CTRL_TCF_SYNC; 314 315 /* 316 * If the system supports it and both sync and async modes are 317 * specified then implicitly enable asymmetric mode. 318 * Userspace could see a mix of both sync and async anyway due 319 * to differing or changing defaults on CPUs. 320 */ 321 if (cpus_have_cap(ARM64_MTE_ASYMM) && 322 (arg & PR_MTE_TCF_ASYNC) && 323 (arg & PR_MTE_TCF_SYNC)) 324 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 325 326 task->thread.mte_ctrl = mte_ctrl; 327 if (task == current) { 328 preempt_disable(); 329 mte_update_sctlr_user(task); 330 mte_update_gcr_excl(task); 331 update_sctlr_el1(task->thread.sctlr_user); 332 preempt_enable(); 333 } 334 335 return 0; 336 } 337 338 long get_mte_ctrl(struct task_struct *task) 339 { 340 unsigned long ret; 341 u64 mte_ctrl = task->thread.mte_ctrl; 342 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 343 SYS_GCR_EL1_EXCL_MASK; 344 345 if (!system_supports_mte()) 346 return 0; 347 348 ret = incl << PR_MTE_TAG_SHIFT; 349 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 350 ret |= PR_MTE_TCF_ASYNC; 351 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 352 ret |= PR_MTE_TCF_SYNC; 353 354 return ret; 355 } 356 357 /* 358 * Access MTE tags in another process' address space as given in mm. Update 359 * the number of tags copied. Return 0 if any tags copied, error otherwise. 360 * Inspired by __access_remote_vm(). 361 */ 362 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 363 struct iovec *kiov, unsigned int gup_flags) 364 { 365 struct vm_area_struct *vma; 366 void __user *buf = kiov->iov_base; 367 size_t len = kiov->iov_len; 368 int ret; 369 int write = gup_flags & FOLL_WRITE; 370 371 if (!access_ok(buf, len)) 372 return -EFAULT; 373 374 if (mmap_read_lock_killable(mm)) 375 return -EIO; 376 377 while (len) { 378 unsigned long tags, offset; 379 void *maddr; 380 struct page *page = NULL; 381 382 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 383 &vma, NULL); 384 if (ret <= 0) 385 break; 386 387 /* 388 * Only copy tags if the page has been mapped as PROT_MTE 389 * (PG_mte_tagged set). Otherwise the tags are not valid and 390 * not accessible to user. Moreover, an mprotect(PROT_MTE) 391 * would cause the existing tags to be cleared if the page 392 * was never mapped with PROT_MTE. 393 */ 394 if (!(vma->vm_flags & VM_MTE)) { 395 ret = -EOPNOTSUPP; 396 put_page(page); 397 break; 398 } 399 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); 400 401 /* limit access to the end of the page */ 402 offset = offset_in_page(addr); 403 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 404 405 maddr = page_address(page); 406 if (write) { 407 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 408 set_page_dirty_lock(page); 409 } else { 410 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 411 } 412 put_page(page); 413 414 /* error accessing the tracer's buffer */ 415 if (!tags) 416 break; 417 418 len -= tags; 419 buf += tags; 420 addr += tags * MTE_GRANULE_SIZE; 421 } 422 mmap_read_unlock(mm); 423 424 /* return an error if no tags copied */ 425 kiov->iov_len = buf - kiov->iov_base; 426 if (!kiov->iov_len) { 427 /* check for error accessing the tracee's address space */ 428 if (ret <= 0) 429 return -EIO; 430 else 431 return -EFAULT; 432 } 433 434 return 0; 435 } 436 437 /* 438 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 439 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 440 */ 441 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 442 struct iovec *kiov, unsigned int gup_flags) 443 { 444 struct mm_struct *mm; 445 int ret; 446 447 mm = get_task_mm(tsk); 448 if (!mm) 449 return -EPERM; 450 451 if (!tsk->ptrace || (current != tsk->parent) || 452 ((get_dumpable(mm) != SUID_DUMP_USER) && 453 !ptracer_capable(tsk, mm->user_ns))) { 454 mmput(mm); 455 return -EPERM; 456 } 457 458 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 459 mmput(mm); 460 461 return ret; 462 } 463 464 int mte_ptrace_copy_tags(struct task_struct *child, long request, 465 unsigned long addr, unsigned long data) 466 { 467 int ret; 468 struct iovec kiov; 469 struct iovec __user *uiov = (void __user *)data; 470 unsigned int gup_flags = FOLL_FORCE; 471 472 if (!system_supports_mte()) 473 return -EIO; 474 475 if (get_user(kiov.iov_base, &uiov->iov_base) || 476 get_user(kiov.iov_len, &uiov->iov_len)) 477 return -EFAULT; 478 479 if (request == PTRACE_POKEMTETAGS) 480 gup_flags |= FOLL_WRITE; 481 482 /* align addr to the MTE tag granule */ 483 addr &= MTE_GRANULE_MASK; 484 485 ret = access_remote_tags(child, addr, &kiov, gup_flags); 486 if (!ret) 487 ret = put_user(kiov.iov_len, &uiov->iov_len); 488 489 return ret; 490 } 491 492 static ssize_t mte_tcf_preferred_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 switch (per_cpu(mte_tcf_preferred, dev->id)) { 496 case MTE_CTRL_TCF_ASYNC: 497 return sysfs_emit(buf, "async\n"); 498 case MTE_CTRL_TCF_SYNC: 499 return sysfs_emit(buf, "sync\n"); 500 case MTE_CTRL_TCF_ASYMM: 501 return sysfs_emit(buf, "asymm\n"); 502 default: 503 return sysfs_emit(buf, "???\n"); 504 } 505 } 506 507 static ssize_t mte_tcf_preferred_store(struct device *dev, 508 struct device_attribute *attr, 509 const char *buf, size_t count) 510 { 511 u64 tcf; 512 513 if (sysfs_streq(buf, "async")) 514 tcf = MTE_CTRL_TCF_ASYNC; 515 else if (sysfs_streq(buf, "sync")) 516 tcf = MTE_CTRL_TCF_SYNC; 517 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 518 tcf = MTE_CTRL_TCF_ASYMM; 519 else 520 return -EINVAL; 521 522 device_lock(dev); 523 per_cpu(mte_tcf_preferred, dev->id) = tcf; 524 device_unlock(dev); 525 526 return count; 527 } 528 static DEVICE_ATTR_RW(mte_tcf_preferred); 529 530 static int register_mte_tcf_preferred_sysctl(void) 531 { 532 unsigned int cpu; 533 534 if (!system_supports_mte()) 535 return 0; 536 537 for_each_possible_cpu(cpu) { 538 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 539 device_create_file(get_cpu_device(cpu), 540 &dev_attr_mte_tcf_preferred); 541 } 542 543 return 0; 544 } 545 subsys_initcall(register_mte_tcf_preferred_sysctl); 546