1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AArch64 loadable module support. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/elf.h> 12 #include <linux/gfp.h> 13 #include <linux/kasan.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/moduleloader.h> 17 #include <linux/vmalloc.h> 18 #include <asm/alternative.h> 19 #include <asm/insn.h> 20 #include <asm/sections.h> 21 22 void *module_alloc(unsigned long size) 23 { 24 u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; 25 gfp_t gfp_mask = GFP_KERNEL; 26 void *p; 27 28 /* Silence the initial allocation */ 29 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) 30 gfp_mask |= __GFP_NOWARN; 31 32 if (IS_ENABLED(CONFIG_KASAN)) 33 /* don't exceed the static module region - see below */ 34 module_alloc_end = MODULES_END; 35 36 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 37 module_alloc_end, gfp_mask, PAGE_KERNEL, 0, 38 NUMA_NO_NODE, __builtin_return_address(0)); 39 40 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 41 !IS_ENABLED(CONFIG_KASAN)) 42 /* 43 * KASAN can only deal with module allocations being served 44 * from the reserved module region, since the remainder of 45 * the vmalloc region is already backed by zero shadow pages, 46 * and punching holes into it is non-trivial. Since the module 47 * region is not randomized when KASAN is enabled, it is even 48 * less likely that the module region gets exhausted, so we 49 * can simply omit this fallback in that case. 50 */ 51 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 52 module_alloc_base + SZ_2G, GFP_KERNEL, 53 PAGE_KERNEL, 0, NUMA_NO_NODE, 54 __builtin_return_address(0)); 55 56 if (p && (kasan_module_alloc(p, size) < 0)) { 57 vfree(p); 58 return NULL; 59 } 60 61 return p; 62 } 63 64 enum aarch64_reloc_op { 65 RELOC_OP_NONE, 66 RELOC_OP_ABS, 67 RELOC_OP_PREL, 68 RELOC_OP_PAGE, 69 }; 70 71 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) 72 { 73 switch (reloc_op) { 74 case RELOC_OP_ABS: 75 return val; 76 case RELOC_OP_PREL: 77 return val - (u64)place; 78 case RELOC_OP_PAGE: 79 return (val & ~0xfff) - ((u64)place & ~0xfff); 80 case RELOC_OP_NONE: 81 return 0; 82 } 83 84 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); 85 return 0; 86 } 87 88 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) 89 { 90 s64 sval = do_reloc(op, place, val); 91 92 /* 93 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place 94 * relative and absolute relocations as having a range of [-2^15, 2^16) 95 * or [-2^31, 2^32), respectively. However, in order to be able to 96 * detect overflows reliably, we have to choose whether we interpret 97 * such quantities as signed or as unsigned, and stick with it. 98 * The way we organize our address space requires a signed 99 * interpretation of 32-bit relative references, so let's use that 100 * for all R_AARCH64_PRELxx relocations. This means our upper 101 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. 102 */ 103 104 switch (len) { 105 case 16: 106 *(s16 *)place = sval; 107 switch (op) { 108 case RELOC_OP_ABS: 109 if (sval < 0 || sval > U16_MAX) 110 return -ERANGE; 111 break; 112 case RELOC_OP_PREL: 113 if (sval < S16_MIN || sval > S16_MAX) 114 return -ERANGE; 115 break; 116 default: 117 pr_err("Invalid 16-bit data relocation (%d)\n", op); 118 return 0; 119 } 120 break; 121 case 32: 122 *(s32 *)place = sval; 123 switch (op) { 124 case RELOC_OP_ABS: 125 if (sval < 0 || sval > U32_MAX) 126 return -ERANGE; 127 break; 128 case RELOC_OP_PREL: 129 if (sval < S32_MIN || sval > S32_MAX) 130 return -ERANGE; 131 break; 132 default: 133 pr_err("Invalid 32-bit data relocation (%d)\n", op); 134 return 0; 135 } 136 break; 137 case 64: 138 *(s64 *)place = sval; 139 break; 140 default: 141 pr_err("Invalid length (%d) for data relocation\n", len); 142 return 0; 143 } 144 return 0; 145 } 146 147 enum aarch64_insn_movw_imm_type { 148 AARCH64_INSN_IMM_MOVNZ, 149 AARCH64_INSN_IMM_MOVKZ, 150 }; 151 152 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, 153 int lsb, enum aarch64_insn_movw_imm_type imm_type) 154 { 155 u64 imm; 156 s64 sval; 157 u32 insn = le32_to_cpu(*place); 158 159 sval = do_reloc(op, place, val); 160 imm = sval >> lsb; 161 162 if (imm_type == AARCH64_INSN_IMM_MOVNZ) { 163 /* 164 * For signed MOVW relocations, we have to manipulate the 165 * instruction encoding depending on whether or not the 166 * immediate is less than zero. 167 */ 168 insn &= ~(3 << 29); 169 if (sval >= 0) { 170 /* >=0: Set the instruction to MOVZ (opcode 10b). */ 171 insn |= 2 << 29; 172 } else { 173 /* 174 * <0: Set the instruction to MOVN (opcode 00b). 175 * Since we've masked the opcode already, we 176 * don't need to do anything other than 177 * inverting the new immediate field. 178 */ 179 imm = ~imm; 180 } 181 } 182 183 /* Update the instruction with the new encoding. */ 184 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); 185 *place = cpu_to_le32(insn); 186 187 if (imm > U16_MAX) 188 return -ERANGE; 189 190 return 0; 191 } 192 193 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, 194 int lsb, int len, enum aarch64_insn_imm_type imm_type) 195 { 196 u64 imm, imm_mask; 197 s64 sval; 198 u32 insn = le32_to_cpu(*place); 199 200 /* Calculate the relocation value. */ 201 sval = do_reloc(op, place, val); 202 sval >>= lsb; 203 204 /* Extract the value bits and shift them to bit 0. */ 205 imm_mask = (BIT(lsb + len) - 1) >> lsb; 206 imm = sval & imm_mask; 207 208 /* Update the instruction's immediate field. */ 209 insn = aarch64_insn_encode_immediate(imm_type, insn, imm); 210 *place = cpu_to_le32(insn); 211 212 /* 213 * Extract the upper value bits (including the sign bit) and 214 * shift them to bit 0. 215 */ 216 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); 217 218 /* 219 * Overflow has occurred if the upper bits are not all equal to 220 * the sign bit of the value. 221 */ 222 if ((u64)(sval + 1) >= 2) 223 return -ERANGE; 224 225 return 0; 226 } 227 228 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, 229 __le32 *place, u64 val) 230 { 231 u32 insn; 232 233 if (!is_forbidden_offset_for_adrp(place)) 234 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, 235 AARCH64_INSN_IMM_ADR); 236 237 /* patch ADRP to ADR if it is in range */ 238 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, 239 AARCH64_INSN_IMM_ADR)) { 240 insn = le32_to_cpu(*place); 241 insn &= ~BIT(31); 242 } else { 243 /* out of range for ADR -> emit a veneer */ 244 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); 245 if (!val) 246 return -ENOEXEC; 247 insn = aarch64_insn_gen_branch_imm((u64)place, val, 248 AARCH64_INSN_BRANCH_NOLINK); 249 } 250 251 *place = cpu_to_le32(insn); 252 return 0; 253 } 254 255 int apply_relocate_add(Elf64_Shdr *sechdrs, 256 const char *strtab, 257 unsigned int symindex, 258 unsigned int relsec, 259 struct module *me) 260 { 261 unsigned int i; 262 int ovf; 263 bool overflow_check; 264 Elf64_Sym *sym; 265 void *loc; 266 u64 val; 267 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 268 269 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 270 /* loc corresponds to P in the AArch64 ELF document. */ 271 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 272 + rel[i].r_offset; 273 274 /* sym is the ELF symbol we're referring to. */ 275 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 276 + ELF64_R_SYM(rel[i].r_info); 277 278 /* val corresponds to (S + A) in the AArch64 ELF document. */ 279 val = sym->st_value + rel[i].r_addend; 280 281 /* Check for overflow by default. */ 282 overflow_check = true; 283 284 /* Perform the static relocation. */ 285 switch (ELF64_R_TYPE(rel[i].r_info)) { 286 /* Null relocations. */ 287 case R_ARM_NONE: 288 case R_AARCH64_NONE: 289 ovf = 0; 290 break; 291 292 /* Data relocations. */ 293 case R_AARCH64_ABS64: 294 overflow_check = false; 295 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); 296 break; 297 case R_AARCH64_ABS32: 298 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); 299 break; 300 case R_AARCH64_ABS16: 301 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); 302 break; 303 case R_AARCH64_PREL64: 304 overflow_check = false; 305 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); 306 break; 307 case R_AARCH64_PREL32: 308 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); 309 break; 310 case R_AARCH64_PREL16: 311 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); 312 break; 313 314 /* MOVW instruction relocations. */ 315 case R_AARCH64_MOVW_UABS_G0_NC: 316 overflow_check = false; 317 /* Fall through */ 318 case R_AARCH64_MOVW_UABS_G0: 319 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 320 AARCH64_INSN_IMM_MOVKZ); 321 break; 322 case R_AARCH64_MOVW_UABS_G1_NC: 323 overflow_check = false; 324 /* Fall through */ 325 case R_AARCH64_MOVW_UABS_G1: 326 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 327 AARCH64_INSN_IMM_MOVKZ); 328 break; 329 case R_AARCH64_MOVW_UABS_G2_NC: 330 overflow_check = false; 331 /* Fall through */ 332 case R_AARCH64_MOVW_UABS_G2: 333 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 334 AARCH64_INSN_IMM_MOVKZ); 335 break; 336 case R_AARCH64_MOVW_UABS_G3: 337 /* We're using the top bits so we can't overflow. */ 338 overflow_check = false; 339 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, 340 AARCH64_INSN_IMM_MOVKZ); 341 break; 342 case R_AARCH64_MOVW_SABS_G0: 343 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 344 AARCH64_INSN_IMM_MOVNZ); 345 break; 346 case R_AARCH64_MOVW_SABS_G1: 347 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 348 AARCH64_INSN_IMM_MOVNZ); 349 break; 350 case R_AARCH64_MOVW_SABS_G2: 351 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 352 AARCH64_INSN_IMM_MOVNZ); 353 break; 354 case R_AARCH64_MOVW_PREL_G0_NC: 355 overflow_check = false; 356 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 357 AARCH64_INSN_IMM_MOVKZ); 358 break; 359 case R_AARCH64_MOVW_PREL_G0: 360 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 361 AARCH64_INSN_IMM_MOVNZ); 362 break; 363 case R_AARCH64_MOVW_PREL_G1_NC: 364 overflow_check = false; 365 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 366 AARCH64_INSN_IMM_MOVKZ); 367 break; 368 case R_AARCH64_MOVW_PREL_G1: 369 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 370 AARCH64_INSN_IMM_MOVNZ); 371 break; 372 case R_AARCH64_MOVW_PREL_G2_NC: 373 overflow_check = false; 374 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 375 AARCH64_INSN_IMM_MOVKZ); 376 break; 377 case R_AARCH64_MOVW_PREL_G2: 378 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 379 AARCH64_INSN_IMM_MOVNZ); 380 break; 381 case R_AARCH64_MOVW_PREL_G3: 382 /* We're using the top bits so we can't overflow. */ 383 overflow_check = false; 384 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, 385 AARCH64_INSN_IMM_MOVNZ); 386 break; 387 388 /* Immediate instruction relocations. */ 389 case R_AARCH64_LD_PREL_LO19: 390 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 391 AARCH64_INSN_IMM_19); 392 break; 393 case R_AARCH64_ADR_PREL_LO21: 394 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, 395 AARCH64_INSN_IMM_ADR); 396 break; 397 case R_AARCH64_ADR_PREL_PG_HI21_NC: 398 overflow_check = false; 399 /* Fall through */ 400 case R_AARCH64_ADR_PREL_PG_HI21: 401 ovf = reloc_insn_adrp(me, sechdrs, loc, val); 402 if (ovf && ovf != -ERANGE) 403 return ovf; 404 break; 405 case R_AARCH64_ADD_ABS_LO12_NC: 406 case R_AARCH64_LDST8_ABS_LO12_NC: 407 overflow_check = false; 408 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, 409 AARCH64_INSN_IMM_12); 410 break; 411 case R_AARCH64_LDST16_ABS_LO12_NC: 412 overflow_check = false; 413 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, 414 AARCH64_INSN_IMM_12); 415 break; 416 case R_AARCH64_LDST32_ABS_LO12_NC: 417 overflow_check = false; 418 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, 419 AARCH64_INSN_IMM_12); 420 break; 421 case R_AARCH64_LDST64_ABS_LO12_NC: 422 overflow_check = false; 423 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, 424 AARCH64_INSN_IMM_12); 425 break; 426 case R_AARCH64_LDST128_ABS_LO12_NC: 427 overflow_check = false; 428 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, 429 AARCH64_INSN_IMM_12); 430 break; 431 case R_AARCH64_TSTBR14: 432 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, 433 AARCH64_INSN_IMM_14); 434 break; 435 case R_AARCH64_CONDBR19: 436 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 437 AARCH64_INSN_IMM_19); 438 break; 439 case R_AARCH64_JUMP26: 440 case R_AARCH64_CALL26: 441 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, 442 AARCH64_INSN_IMM_26); 443 444 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 445 ovf == -ERANGE) { 446 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); 447 if (!val) 448 return -ENOEXEC; 449 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 450 26, AARCH64_INSN_IMM_26); 451 } 452 break; 453 454 default: 455 pr_err("module %s: unsupported RELA relocation: %llu\n", 456 me->name, ELF64_R_TYPE(rel[i].r_info)); 457 return -ENOEXEC; 458 } 459 460 if (overflow_check && ovf == -ERANGE) 461 goto overflow; 462 463 } 464 465 return 0; 466 467 overflow: 468 pr_err("module %s: overflow in relocation type %d val %Lx\n", 469 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); 470 return -ENOEXEC; 471 } 472 473 int module_finalize(const Elf_Ehdr *hdr, 474 const Elf_Shdr *sechdrs, 475 struct module *me) 476 { 477 const Elf_Shdr *s, *se; 478 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 479 480 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { 481 if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) 482 apply_alternatives_module((void *)s->sh_addr, s->sh_size); 483 #ifdef CONFIG_ARM64_MODULE_PLTS 484 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) && 485 !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name)) 486 me->arch.ftrace_trampoline = (void *)s->sh_addr; 487 #endif 488 } 489 490 return 0; 491 } 492