xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 9a29f5fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/vmalloc.h>
19 #include <asm/alternative.h>
20 #include <asm/insn.h>
21 #include <asm/sections.h>
22 
23 void *module_alloc(unsigned long size)
24 {
25 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
26 	gfp_t gfp_mask = GFP_KERNEL;
27 	void *p;
28 
29 	/* Silence the initial allocation */
30 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
31 		gfp_mask |= __GFP_NOWARN;
32 
33 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
34 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
35 		/* don't exceed the static module region - see below */
36 		module_alloc_end = MODULES_END;
37 
38 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
39 				module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK,
40 				NUMA_NO_NODE, __builtin_return_address(0));
41 
42 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
43 	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
44 	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
45 	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
46 		/*
47 		 * KASAN without KASAN_VMALLOC can only deal with module
48 		 * allocations being served from the reserved module region,
49 		 * since the remainder of the vmalloc region is already
50 		 * backed by zero shadow pages, and punching holes into it
51 		 * is non-trivial. Since the module region is not randomized
52 		 * when KASAN is enabled without KASAN_VMALLOC, it is even
53 		 * less likely that the module region gets exhausted, so we
54 		 * can simply omit this fallback in that case.
55 		 */
56 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
57 				module_alloc_base + SZ_2G, GFP_KERNEL,
58 				PAGE_KERNEL, 0, NUMA_NO_NODE,
59 				__builtin_return_address(0));
60 
61 	if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
62 		vfree(p);
63 		return NULL;
64 	}
65 
66 	/* Memory is intended to be executable, reset the pointer tag. */
67 	return kasan_reset_tag(p);
68 }
69 
70 enum aarch64_reloc_op {
71 	RELOC_OP_NONE,
72 	RELOC_OP_ABS,
73 	RELOC_OP_PREL,
74 	RELOC_OP_PAGE,
75 };
76 
77 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
78 {
79 	switch (reloc_op) {
80 	case RELOC_OP_ABS:
81 		return val;
82 	case RELOC_OP_PREL:
83 		return val - (u64)place;
84 	case RELOC_OP_PAGE:
85 		return (val & ~0xfff) - ((u64)place & ~0xfff);
86 	case RELOC_OP_NONE:
87 		return 0;
88 	}
89 
90 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
91 	return 0;
92 }
93 
94 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
95 {
96 	s64 sval = do_reloc(op, place, val);
97 
98 	/*
99 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
100 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
101 	 * or [-2^31, 2^32), respectively. However, in order to be able to
102 	 * detect overflows reliably, we have to choose whether we interpret
103 	 * such quantities as signed or as unsigned, and stick with it.
104 	 * The way we organize our address space requires a signed
105 	 * interpretation of 32-bit relative references, so let's use that
106 	 * for all R_AARCH64_PRELxx relocations. This means our upper
107 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
108 	 */
109 
110 	switch (len) {
111 	case 16:
112 		*(s16 *)place = sval;
113 		switch (op) {
114 		case RELOC_OP_ABS:
115 			if (sval < 0 || sval > U16_MAX)
116 				return -ERANGE;
117 			break;
118 		case RELOC_OP_PREL:
119 			if (sval < S16_MIN || sval > S16_MAX)
120 				return -ERANGE;
121 			break;
122 		default:
123 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
124 			return 0;
125 		}
126 		break;
127 	case 32:
128 		*(s32 *)place = sval;
129 		switch (op) {
130 		case RELOC_OP_ABS:
131 			if (sval < 0 || sval > U32_MAX)
132 				return -ERANGE;
133 			break;
134 		case RELOC_OP_PREL:
135 			if (sval < S32_MIN || sval > S32_MAX)
136 				return -ERANGE;
137 			break;
138 		default:
139 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
140 			return 0;
141 		}
142 		break;
143 	case 64:
144 		*(s64 *)place = sval;
145 		break;
146 	default:
147 		pr_err("Invalid length (%d) for data relocation\n", len);
148 		return 0;
149 	}
150 	return 0;
151 }
152 
153 enum aarch64_insn_movw_imm_type {
154 	AARCH64_INSN_IMM_MOVNZ,
155 	AARCH64_INSN_IMM_MOVKZ,
156 };
157 
158 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
159 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
160 {
161 	u64 imm;
162 	s64 sval;
163 	u32 insn = le32_to_cpu(*place);
164 
165 	sval = do_reloc(op, place, val);
166 	imm = sval >> lsb;
167 
168 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
169 		/*
170 		 * For signed MOVW relocations, we have to manipulate the
171 		 * instruction encoding depending on whether or not the
172 		 * immediate is less than zero.
173 		 */
174 		insn &= ~(3 << 29);
175 		if (sval >= 0) {
176 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
177 			insn |= 2 << 29;
178 		} else {
179 			/*
180 			 * <0: Set the instruction to MOVN (opcode 00b).
181 			 *     Since we've masked the opcode already, we
182 			 *     don't need to do anything other than
183 			 *     inverting the new immediate field.
184 			 */
185 			imm = ~imm;
186 		}
187 	}
188 
189 	/* Update the instruction with the new encoding. */
190 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
191 	*place = cpu_to_le32(insn);
192 
193 	if (imm > U16_MAX)
194 		return -ERANGE;
195 
196 	return 0;
197 }
198 
199 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
200 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
201 {
202 	u64 imm, imm_mask;
203 	s64 sval;
204 	u32 insn = le32_to_cpu(*place);
205 
206 	/* Calculate the relocation value. */
207 	sval = do_reloc(op, place, val);
208 	sval >>= lsb;
209 
210 	/* Extract the value bits and shift them to bit 0. */
211 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
212 	imm = sval & imm_mask;
213 
214 	/* Update the instruction's immediate field. */
215 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
216 	*place = cpu_to_le32(insn);
217 
218 	/*
219 	 * Extract the upper value bits (including the sign bit) and
220 	 * shift them to bit 0.
221 	 */
222 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
223 
224 	/*
225 	 * Overflow has occurred if the upper bits are not all equal to
226 	 * the sign bit of the value.
227 	 */
228 	if ((u64)(sval + 1) >= 2)
229 		return -ERANGE;
230 
231 	return 0;
232 }
233 
234 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
235 			   __le32 *place, u64 val)
236 {
237 	u32 insn;
238 
239 	if (!is_forbidden_offset_for_adrp(place))
240 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
241 				      AARCH64_INSN_IMM_ADR);
242 
243 	/* patch ADRP to ADR if it is in range */
244 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
245 			    AARCH64_INSN_IMM_ADR)) {
246 		insn = le32_to_cpu(*place);
247 		insn &= ~BIT(31);
248 	} else {
249 		/* out of range for ADR -> emit a veneer */
250 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
251 		if (!val)
252 			return -ENOEXEC;
253 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
254 						   AARCH64_INSN_BRANCH_NOLINK);
255 	}
256 
257 	*place = cpu_to_le32(insn);
258 	return 0;
259 }
260 
261 int apply_relocate_add(Elf64_Shdr *sechdrs,
262 		       const char *strtab,
263 		       unsigned int symindex,
264 		       unsigned int relsec,
265 		       struct module *me)
266 {
267 	unsigned int i;
268 	int ovf;
269 	bool overflow_check;
270 	Elf64_Sym *sym;
271 	void *loc;
272 	u64 val;
273 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
274 
275 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
276 		/* loc corresponds to P in the AArch64 ELF document. */
277 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
278 			+ rel[i].r_offset;
279 
280 		/* sym is the ELF symbol we're referring to. */
281 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
282 			+ ELF64_R_SYM(rel[i].r_info);
283 
284 		/* val corresponds to (S + A) in the AArch64 ELF document. */
285 		val = sym->st_value + rel[i].r_addend;
286 
287 		/* Check for overflow by default. */
288 		overflow_check = true;
289 
290 		/* Perform the static relocation. */
291 		switch (ELF64_R_TYPE(rel[i].r_info)) {
292 		/* Null relocations. */
293 		case R_ARM_NONE:
294 		case R_AARCH64_NONE:
295 			ovf = 0;
296 			break;
297 
298 		/* Data relocations. */
299 		case R_AARCH64_ABS64:
300 			overflow_check = false;
301 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
302 			break;
303 		case R_AARCH64_ABS32:
304 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
305 			break;
306 		case R_AARCH64_ABS16:
307 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
308 			break;
309 		case R_AARCH64_PREL64:
310 			overflow_check = false;
311 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
312 			break;
313 		case R_AARCH64_PREL32:
314 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
315 			break;
316 		case R_AARCH64_PREL16:
317 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
318 			break;
319 
320 		/* MOVW instruction relocations. */
321 		case R_AARCH64_MOVW_UABS_G0_NC:
322 			overflow_check = false;
323 			fallthrough;
324 		case R_AARCH64_MOVW_UABS_G0:
325 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
326 					      AARCH64_INSN_IMM_MOVKZ);
327 			break;
328 		case R_AARCH64_MOVW_UABS_G1_NC:
329 			overflow_check = false;
330 			fallthrough;
331 		case R_AARCH64_MOVW_UABS_G1:
332 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
333 					      AARCH64_INSN_IMM_MOVKZ);
334 			break;
335 		case R_AARCH64_MOVW_UABS_G2_NC:
336 			overflow_check = false;
337 			fallthrough;
338 		case R_AARCH64_MOVW_UABS_G2:
339 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
340 					      AARCH64_INSN_IMM_MOVKZ);
341 			break;
342 		case R_AARCH64_MOVW_UABS_G3:
343 			/* We're using the top bits so we can't overflow. */
344 			overflow_check = false;
345 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
346 					      AARCH64_INSN_IMM_MOVKZ);
347 			break;
348 		case R_AARCH64_MOVW_SABS_G0:
349 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
350 					      AARCH64_INSN_IMM_MOVNZ);
351 			break;
352 		case R_AARCH64_MOVW_SABS_G1:
353 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
354 					      AARCH64_INSN_IMM_MOVNZ);
355 			break;
356 		case R_AARCH64_MOVW_SABS_G2:
357 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
358 					      AARCH64_INSN_IMM_MOVNZ);
359 			break;
360 		case R_AARCH64_MOVW_PREL_G0_NC:
361 			overflow_check = false;
362 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
363 					      AARCH64_INSN_IMM_MOVKZ);
364 			break;
365 		case R_AARCH64_MOVW_PREL_G0:
366 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
367 					      AARCH64_INSN_IMM_MOVNZ);
368 			break;
369 		case R_AARCH64_MOVW_PREL_G1_NC:
370 			overflow_check = false;
371 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
372 					      AARCH64_INSN_IMM_MOVKZ);
373 			break;
374 		case R_AARCH64_MOVW_PREL_G1:
375 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
376 					      AARCH64_INSN_IMM_MOVNZ);
377 			break;
378 		case R_AARCH64_MOVW_PREL_G2_NC:
379 			overflow_check = false;
380 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
381 					      AARCH64_INSN_IMM_MOVKZ);
382 			break;
383 		case R_AARCH64_MOVW_PREL_G2:
384 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
385 					      AARCH64_INSN_IMM_MOVNZ);
386 			break;
387 		case R_AARCH64_MOVW_PREL_G3:
388 			/* We're using the top bits so we can't overflow. */
389 			overflow_check = false;
390 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
391 					      AARCH64_INSN_IMM_MOVNZ);
392 			break;
393 
394 		/* Immediate instruction relocations. */
395 		case R_AARCH64_LD_PREL_LO19:
396 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
397 					     AARCH64_INSN_IMM_19);
398 			break;
399 		case R_AARCH64_ADR_PREL_LO21:
400 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
401 					     AARCH64_INSN_IMM_ADR);
402 			break;
403 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
404 			overflow_check = false;
405 			fallthrough;
406 		case R_AARCH64_ADR_PREL_PG_HI21:
407 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
408 			if (ovf && ovf != -ERANGE)
409 				return ovf;
410 			break;
411 		case R_AARCH64_ADD_ABS_LO12_NC:
412 		case R_AARCH64_LDST8_ABS_LO12_NC:
413 			overflow_check = false;
414 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
415 					     AARCH64_INSN_IMM_12);
416 			break;
417 		case R_AARCH64_LDST16_ABS_LO12_NC:
418 			overflow_check = false;
419 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
420 					     AARCH64_INSN_IMM_12);
421 			break;
422 		case R_AARCH64_LDST32_ABS_LO12_NC:
423 			overflow_check = false;
424 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
425 					     AARCH64_INSN_IMM_12);
426 			break;
427 		case R_AARCH64_LDST64_ABS_LO12_NC:
428 			overflow_check = false;
429 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
430 					     AARCH64_INSN_IMM_12);
431 			break;
432 		case R_AARCH64_LDST128_ABS_LO12_NC:
433 			overflow_check = false;
434 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
435 					     AARCH64_INSN_IMM_12);
436 			break;
437 		case R_AARCH64_TSTBR14:
438 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
439 					     AARCH64_INSN_IMM_14);
440 			break;
441 		case R_AARCH64_CONDBR19:
442 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
443 					     AARCH64_INSN_IMM_19);
444 			break;
445 		case R_AARCH64_JUMP26:
446 		case R_AARCH64_CALL26:
447 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
448 					     AARCH64_INSN_IMM_26);
449 
450 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
451 			    ovf == -ERANGE) {
452 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
453 				if (!val)
454 					return -ENOEXEC;
455 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
456 						     26, AARCH64_INSN_IMM_26);
457 			}
458 			break;
459 
460 		default:
461 			pr_err("module %s: unsupported RELA relocation: %llu\n",
462 			       me->name, ELF64_R_TYPE(rel[i].r_info));
463 			return -ENOEXEC;
464 		}
465 
466 		if (overflow_check && ovf == -ERANGE)
467 			goto overflow;
468 
469 	}
470 
471 	return 0;
472 
473 overflow:
474 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
475 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
476 	return -ENOEXEC;
477 }
478 
479 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
480 {
481 	*plt = get_plt_entry(addr, plt);
482 }
483 
484 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
485 				  const Elf_Shdr *sechdrs,
486 				  struct module *mod)
487 {
488 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
489 	const Elf_Shdr *s;
490 	struct plt_entry *plts;
491 
492 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
493 	if (!s)
494 		return -ENOEXEC;
495 
496 	plts = (void *)s->sh_addr;
497 
498 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
499 
500 	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
501 		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
502 
503 	mod->arch.ftrace_trampolines = plts;
504 #endif
505 	return 0;
506 }
507 
508 int module_finalize(const Elf_Ehdr *hdr,
509 		    const Elf_Shdr *sechdrs,
510 		    struct module *me)
511 {
512 	const Elf_Shdr *s;
513 	s = find_section(hdr, sechdrs, ".altinstructions");
514 	if (s)
515 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
516 
517 	return module_init_ftrace_plt(hdr, sechdrs, me);
518 }
519