1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AArch64 loadable module support. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/elf.h> 12 #include <linux/ftrace.h> 13 #include <linux/gfp.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/moduleloader.h> 18 #include <linux/vmalloc.h> 19 #include <asm/alternative.h> 20 #include <asm/insn.h> 21 #include <asm/sections.h> 22 23 void *module_alloc(unsigned long size) 24 { 25 u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; 26 gfp_t gfp_mask = GFP_KERNEL; 27 void *p; 28 29 /* Silence the initial allocation */ 30 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) 31 gfp_mask |= __GFP_NOWARN; 32 33 if (IS_ENABLED(CONFIG_KASAN)) 34 /* don't exceed the static module region - see below */ 35 module_alloc_end = MODULES_END; 36 37 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 38 module_alloc_end, gfp_mask, PAGE_KERNEL, 0, 39 NUMA_NO_NODE, __builtin_return_address(0)); 40 41 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 42 !IS_ENABLED(CONFIG_KASAN)) 43 /* 44 * KASAN can only deal with module allocations being served 45 * from the reserved module region, since the remainder of 46 * the vmalloc region is already backed by zero shadow pages, 47 * and punching holes into it is non-trivial. Since the module 48 * region is not randomized when KASAN is enabled, it is even 49 * less likely that the module region gets exhausted, so we 50 * can simply omit this fallback in that case. 51 */ 52 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 53 module_alloc_base + SZ_2G, GFP_KERNEL, 54 PAGE_KERNEL, 0, NUMA_NO_NODE, 55 __builtin_return_address(0)); 56 57 if (p && (kasan_module_alloc(p, size) < 0)) { 58 vfree(p); 59 return NULL; 60 } 61 62 return p; 63 } 64 65 enum aarch64_reloc_op { 66 RELOC_OP_NONE, 67 RELOC_OP_ABS, 68 RELOC_OP_PREL, 69 RELOC_OP_PAGE, 70 }; 71 72 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) 73 { 74 switch (reloc_op) { 75 case RELOC_OP_ABS: 76 return val; 77 case RELOC_OP_PREL: 78 return val - (u64)place; 79 case RELOC_OP_PAGE: 80 return (val & ~0xfff) - ((u64)place & ~0xfff); 81 case RELOC_OP_NONE: 82 return 0; 83 } 84 85 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); 86 return 0; 87 } 88 89 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) 90 { 91 s64 sval = do_reloc(op, place, val); 92 93 /* 94 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place 95 * relative and absolute relocations as having a range of [-2^15, 2^16) 96 * or [-2^31, 2^32), respectively. However, in order to be able to 97 * detect overflows reliably, we have to choose whether we interpret 98 * such quantities as signed or as unsigned, and stick with it. 99 * The way we organize our address space requires a signed 100 * interpretation of 32-bit relative references, so let's use that 101 * for all R_AARCH64_PRELxx relocations. This means our upper 102 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. 103 */ 104 105 switch (len) { 106 case 16: 107 *(s16 *)place = sval; 108 switch (op) { 109 case RELOC_OP_ABS: 110 if (sval < 0 || sval > U16_MAX) 111 return -ERANGE; 112 break; 113 case RELOC_OP_PREL: 114 if (sval < S16_MIN || sval > S16_MAX) 115 return -ERANGE; 116 break; 117 default: 118 pr_err("Invalid 16-bit data relocation (%d)\n", op); 119 return 0; 120 } 121 break; 122 case 32: 123 *(s32 *)place = sval; 124 switch (op) { 125 case RELOC_OP_ABS: 126 if (sval < 0 || sval > U32_MAX) 127 return -ERANGE; 128 break; 129 case RELOC_OP_PREL: 130 if (sval < S32_MIN || sval > S32_MAX) 131 return -ERANGE; 132 break; 133 default: 134 pr_err("Invalid 32-bit data relocation (%d)\n", op); 135 return 0; 136 } 137 break; 138 case 64: 139 *(s64 *)place = sval; 140 break; 141 default: 142 pr_err("Invalid length (%d) for data relocation\n", len); 143 return 0; 144 } 145 return 0; 146 } 147 148 enum aarch64_insn_movw_imm_type { 149 AARCH64_INSN_IMM_MOVNZ, 150 AARCH64_INSN_IMM_MOVKZ, 151 }; 152 153 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, 154 int lsb, enum aarch64_insn_movw_imm_type imm_type) 155 { 156 u64 imm; 157 s64 sval; 158 u32 insn = le32_to_cpu(*place); 159 160 sval = do_reloc(op, place, val); 161 imm = sval >> lsb; 162 163 if (imm_type == AARCH64_INSN_IMM_MOVNZ) { 164 /* 165 * For signed MOVW relocations, we have to manipulate the 166 * instruction encoding depending on whether or not the 167 * immediate is less than zero. 168 */ 169 insn &= ~(3 << 29); 170 if (sval >= 0) { 171 /* >=0: Set the instruction to MOVZ (opcode 10b). */ 172 insn |= 2 << 29; 173 } else { 174 /* 175 * <0: Set the instruction to MOVN (opcode 00b). 176 * Since we've masked the opcode already, we 177 * don't need to do anything other than 178 * inverting the new immediate field. 179 */ 180 imm = ~imm; 181 } 182 } 183 184 /* Update the instruction with the new encoding. */ 185 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); 186 *place = cpu_to_le32(insn); 187 188 if (imm > U16_MAX) 189 return -ERANGE; 190 191 return 0; 192 } 193 194 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, 195 int lsb, int len, enum aarch64_insn_imm_type imm_type) 196 { 197 u64 imm, imm_mask; 198 s64 sval; 199 u32 insn = le32_to_cpu(*place); 200 201 /* Calculate the relocation value. */ 202 sval = do_reloc(op, place, val); 203 sval >>= lsb; 204 205 /* Extract the value bits and shift them to bit 0. */ 206 imm_mask = (BIT(lsb + len) - 1) >> lsb; 207 imm = sval & imm_mask; 208 209 /* Update the instruction's immediate field. */ 210 insn = aarch64_insn_encode_immediate(imm_type, insn, imm); 211 *place = cpu_to_le32(insn); 212 213 /* 214 * Extract the upper value bits (including the sign bit) and 215 * shift them to bit 0. 216 */ 217 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); 218 219 /* 220 * Overflow has occurred if the upper bits are not all equal to 221 * the sign bit of the value. 222 */ 223 if ((u64)(sval + 1) >= 2) 224 return -ERANGE; 225 226 return 0; 227 } 228 229 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, 230 __le32 *place, u64 val) 231 { 232 u32 insn; 233 234 if (!is_forbidden_offset_for_adrp(place)) 235 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, 236 AARCH64_INSN_IMM_ADR); 237 238 /* patch ADRP to ADR if it is in range */ 239 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, 240 AARCH64_INSN_IMM_ADR)) { 241 insn = le32_to_cpu(*place); 242 insn &= ~BIT(31); 243 } else { 244 /* out of range for ADR -> emit a veneer */ 245 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); 246 if (!val) 247 return -ENOEXEC; 248 insn = aarch64_insn_gen_branch_imm((u64)place, val, 249 AARCH64_INSN_BRANCH_NOLINK); 250 } 251 252 *place = cpu_to_le32(insn); 253 return 0; 254 } 255 256 int apply_relocate_add(Elf64_Shdr *sechdrs, 257 const char *strtab, 258 unsigned int symindex, 259 unsigned int relsec, 260 struct module *me) 261 { 262 unsigned int i; 263 int ovf; 264 bool overflow_check; 265 Elf64_Sym *sym; 266 void *loc; 267 u64 val; 268 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 269 270 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 271 /* loc corresponds to P in the AArch64 ELF document. */ 272 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 273 + rel[i].r_offset; 274 275 /* sym is the ELF symbol we're referring to. */ 276 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 277 + ELF64_R_SYM(rel[i].r_info); 278 279 /* val corresponds to (S + A) in the AArch64 ELF document. */ 280 val = sym->st_value + rel[i].r_addend; 281 282 /* Check for overflow by default. */ 283 overflow_check = true; 284 285 /* Perform the static relocation. */ 286 switch (ELF64_R_TYPE(rel[i].r_info)) { 287 /* Null relocations. */ 288 case R_ARM_NONE: 289 case R_AARCH64_NONE: 290 ovf = 0; 291 break; 292 293 /* Data relocations. */ 294 case R_AARCH64_ABS64: 295 overflow_check = false; 296 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); 297 break; 298 case R_AARCH64_ABS32: 299 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); 300 break; 301 case R_AARCH64_ABS16: 302 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); 303 break; 304 case R_AARCH64_PREL64: 305 overflow_check = false; 306 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); 307 break; 308 case R_AARCH64_PREL32: 309 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); 310 break; 311 case R_AARCH64_PREL16: 312 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); 313 break; 314 315 /* MOVW instruction relocations. */ 316 case R_AARCH64_MOVW_UABS_G0_NC: 317 overflow_check = false; 318 /* Fall through */ 319 case R_AARCH64_MOVW_UABS_G0: 320 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 321 AARCH64_INSN_IMM_MOVKZ); 322 break; 323 case R_AARCH64_MOVW_UABS_G1_NC: 324 overflow_check = false; 325 /* Fall through */ 326 case R_AARCH64_MOVW_UABS_G1: 327 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 328 AARCH64_INSN_IMM_MOVKZ); 329 break; 330 case R_AARCH64_MOVW_UABS_G2_NC: 331 overflow_check = false; 332 /* Fall through */ 333 case R_AARCH64_MOVW_UABS_G2: 334 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 335 AARCH64_INSN_IMM_MOVKZ); 336 break; 337 case R_AARCH64_MOVW_UABS_G3: 338 /* We're using the top bits so we can't overflow. */ 339 overflow_check = false; 340 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, 341 AARCH64_INSN_IMM_MOVKZ); 342 break; 343 case R_AARCH64_MOVW_SABS_G0: 344 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 345 AARCH64_INSN_IMM_MOVNZ); 346 break; 347 case R_AARCH64_MOVW_SABS_G1: 348 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 349 AARCH64_INSN_IMM_MOVNZ); 350 break; 351 case R_AARCH64_MOVW_SABS_G2: 352 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 353 AARCH64_INSN_IMM_MOVNZ); 354 break; 355 case R_AARCH64_MOVW_PREL_G0_NC: 356 overflow_check = false; 357 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 358 AARCH64_INSN_IMM_MOVKZ); 359 break; 360 case R_AARCH64_MOVW_PREL_G0: 361 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 362 AARCH64_INSN_IMM_MOVNZ); 363 break; 364 case R_AARCH64_MOVW_PREL_G1_NC: 365 overflow_check = false; 366 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 367 AARCH64_INSN_IMM_MOVKZ); 368 break; 369 case R_AARCH64_MOVW_PREL_G1: 370 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 371 AARCH64_INSN_IMM_MOVNZ); 372 break; 373 case R_AARCH64_MOVW_PREL_G2_NC: 374 overflow_check = false; 375 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 376 AARCH64_INSN_IMM_MOVKZ); 377 break; 378 case R_AARCH64_MOVW_PREL_G2: 379 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 380 AARCH64_INSN_IMM_MOVNZ); 381 break; 382 case R_AARCH64_MOVW_PREL_G3: 383 /* We're using the top bits so we can't overflow. */ 384 overflow_check = false; 385 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, 386 AARCH64_INSN_IMM_MOVNZ); 387 break; 388 389 /* Immediate instruction relocations. */ 390 case R_AARCH64_LD_PREL_LO19: 391 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 392 AARCH64_INSN_IMM_19); 393 break; 394 case R_AARCH64_ADR_PREL_LO21: 395 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, 396 AARCH64_INSN_IMM_ADR); 397 break; 398 case R_AARCH64_ADR_PREL_PG_HI21_NC: 399 overflow_check = false; 400 /* Fall through */ 401 case R_AARCH64_ADR_PREL_PG_HI21: 402 ovf = reloc_insn_adrp(me, sechdrs, loc, val); 403 if (ovf && ovf != -ERANGE) 404 return ovf; 405 break; 406 case R_AARCH64_ADD_ABS_LO12_NC: 407 case R_AARCH64_LDST8_ABS_LO12_NC: 408 overflow_check = false; 409 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, 410 AARCH64_INSN_IMM_12); 411 break; 412 case R_AARCH64_LDST16_ABS_LO12_NC: 413 overflow_check = false; 414 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, 415 AARCH64_INSN_IMM_12); 416 break; 417 case R_AARCH64_LDST32_ABS_LO12_NC: 418 overflow_check = false; 419 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, 420 AARCH64_INSN_IMM_12); 421 break; 422 case R_AARCH64_LDST64_ABS_LO12_NC: 423 overflow_check = false; 424 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, 425 AARCH64_INSN_IMM_12); 426 break; 427 case R_AARCH64_LDST128_ABS_LO12_NC: 428 overflow_check = false; 429 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, 430 AARCH64_INSN_IMM_12); 431 break; 432 case R_AARCH64_TSTBR14: 433 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, 434 AARCH64_INSN_IMM_14); 435 break; 436 case R_AARCH64_CONDBR19: 437 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 438 AARCH64_INSN_IMM_19); 439 break; 440 case R_AARCH64_JUMP26: 441 case R_AARCH64_CALL26: 442 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, 443 AARCH64_INSN_IMM_26); 444 445 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 446 ovf == -ERANGE) { 447 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); 448 if (!val) 449 return -ENOEXEC; 450 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 451 26, AARCH64_INSN_IMM_26); 452 } 453 break; 454 455 default: 456 pr_err("module %s: unsupported RELA relocation: %llu\n", 457 me->name, ELF64_R_TYPE(rel[i].r_info)); 458 return -ENOEXEC; 459 } 460 461 if (overflow_check && ovf == -ERANGE) 462 goto overflow; 463 464 } 465 466 return 0; 467 468 overflow: 469 pr_err("module %s: overflow in relocation type %d val %Lx\n", 470 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); 471 return -ENOEXEC; 472 } 473 474 static const Elf_Shdr *find_section(const Elf_Ehdr *hdr, 475 const Elf_Shdr *sechdrs, 476 const char *name) 477 { 478 const Elf_Shdr *s, *se; 479 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 480 481 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { 482 if (strcmp(name, secstrs + s->sh_name) == 0) 483 return s; 484 } 485 486 return NULL; 487 } 488 489 static inline void __init_plt(struct plt_entry *plt, unsigned long addr) 490 { 491 *plt = get_plt_entry(addr, plt); 492 } 493 494 static int module_init_ftrace_plt(const Elf_Ehdr *hdr, 495 const Elf_Shdr *sechdrs, 496 struct module *mod) 497 { 498 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE) 499 const Elf_Shdr *s; 500 struct plt_entry *plts; 501 502 s = find_section(hdr, sechdrs, ".text.ftrace_trampoline"); 503 if (!s) 504 return -ENOEXEC; 505 506 plts = (void *)s->sh_addr; 507 508 __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR); 509 510 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS)) 511 __init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR); 512 513 mod->arch.ftrace_trampolines = plts; 514 #endif 515 return 0; 516 } 517 518 int module_finalize(const Elf_Ehdr *hdr, 519 const Elf_Shdr *sechdrs, 520 struct module *me) 521 { 522 const Elf_Shdr *s; 523 s = find_section(hdr, sechdrs, ".altinstructions"); 524 if (s) 525 apply_alternatives_module((void *)s->sh_addr, s->sh_size); 526 527 return module_init_ftrace_plt(hdr, sechdrs, me); 528 } 529