xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/scs.h>
19 #include <linux/vmalloc.h>
20 #include <asm/alternative.h>
21 #include <asm/insn.h>
22 #include <asm/scs.h>
23 #include <asm/sections.h>
24 
25 void *module_alloc(unsigned long size)
26 {
27 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
28 	gfp_t gfp_mask = GFP_KERNEL;
29 	void *p;
30 
31 	/* Silence the initial allocation */
32 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
33 		gfp_mask |= __GFP_NOWARN;
34 
35 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
36 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
37 		/* don't exceed the static module region - see below */
38 		module_alloc_end = MODULES_END;
39 
40 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
41 				module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK,
42 				NUMA_NO_NODE, __builtin_return_address(0));
43 
44 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
45 	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
46 	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
47 	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
48 		/*
49 		 * KASAN without KASAN_VMALLOC can only deal with module
50 		 * allocations being served from the reserved module region,
51 		 * since the remainder of the vmalloc region is already
52 		 * backed by zero shadow pages, and punching holes into it
53 		 * is non-trivial. Since the module region is not randomized
54 		 * when KASAN is enabled without KASAN_VMALLOC, it is even
55 		 * less likely that the module region gets exhausted, so we
56 		 * can simply omit this fallback in that case.
57 		 */
58 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
59 				module_alloc_base + SZ_2G, GFP_KERNEL,
60 				PAGE_KERNEL, 0, NUMA_NO_NODE,
61 				__builtin_return_address(0));
62 
63 	if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
64 		vfree(p);
65 		return NULL;
66 	}
67 
68 	/* Memory is intended to be executable, reset the pointer tag. */
69 	return kasan_reset_tag(p);
70 }
71 
72 enum aarch64_reloc_op {
73 	RELOC_OP_NONE,
74 	RELOC_OP_ABS,
75 	RELOC_OP_PREL,
76 	RELOC_OP_PAGE,
77 };
78 
79 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
80 {
81 	switch (reloc_op) {
82 	case RELOC_OP_ABS:
83 		return val;
84 	case RELOC_OP_PREL:
85 		return val - (u64)place;
86 	case RELOC_OP_PAGE:
87 		return (val & ~0xfff) - ((u64)place & ~0xfff);
88 	case RELOC_OP_NONE:
89 		return 0;
90 	}
91 
92 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
93 	return 0;
94 }
95 
96 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
97 {
98 	s64 sval = do_reloc(op, place, val);
99 
100 	/*
101 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
102 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
103 	 * or [-2^31, 2^32), respectively. However, in order to be able to
104 	 * detect overflows reliably, we have to choose whether we interpret
105 	 * such quantities as signed or as unsigned, and stick with it.
106 	 * The way we organize our address space requires a signed
107 	 * interpretation of 32-bit relative references, so let's use that
108 	 * for all R_AARCH64_PRELxx relocations. This means our upper
109 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
110 	 */
111 
112 	switch (len) {
113 	case 16:
114 		*(s16 *)place = sval;
115 		switch (op) {
116 		case RELOC_OP_ABS:
117 			if (sval < 0 || sval > U16_MAX)
118 				return -ERANGE;
119 			break;
120 		case RELOC_OP_PREL:
121 			if (sval < S16_MIN || sval > S16_MAX)
122 				return -ERANGE;
123 			break;
124 		default:
125 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
126 			return 0;
127 		}
128 		break;
129 	case 32:
130 		*(s32 *)place = sval;
131 		switch (op) {
132 		case RELOC_OP_ABS:
133 			if (sval < 0 || sval > U32_MAX)
134 				return -ERANGE;
135 			break;
136 		case RELOC_OP_PREL:
137 			if (sval < S32_MIN || sval > S32_MAX)
138 				return -ERANGE;
139 			break;
140 		default:
141 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
142 			return 0;
143 		}
144 		break;
145 	case 64:
146 		*(s64 *)place = sval;
147 		break;
148 	default:
149 		pr_err("Invalid length (%d) for data relocation\n", len);
150 		return 0;
151 	}
152 	return 0;
153 }
154 
155 enum aarch64_insn_movw_imm_type {
156 	AARCH64_INSN_IMM_MOVNZ,
157 	AARCH64_INSN_IMM_MOVKZ,
158 };
159 
160 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
161 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
162 {
163 	u64 imm;
164 	s64 sval;
165 	u32 insn = le32_to_cpu(*place);
166 
167 	sval = do_reloc(op, place, val);
168 	imm = sval >> lsb;
169 
170 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
171 		/*
172 		 * For signed MOVW relocations, we have to manipulate the
173 		 * instruction encoding depending on whether or not the
174 		 * immediate is less than zero.
175 		 */
176 		insn &= ~(3 << 29);
177 		if (sval >= 0) {
178 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
179 			insn |= 2 << 29;
180 		} else {
181 			/*
182 			 * <0: Set the instruction to MOVN (opcode 00b).
183 			 *     Since we've masked the opcode already, we
184 			 *     don't need to do anything other than
185 			 *     inverting the new immediate field.
186 			 */
187 			imm = ~imm;
188 		}
189 	}
190 
191 	/* Update the instruction with the new encoding. */
192 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
193 	*place = cpu_to_le32(insn);
194 
195 	if (imm > U16_MAX)
196 		return -ERANGE;
197 
198 	return 0;
199 }
200 
201 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
202 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
203 {
204 	u64 imm, imm_mask;
205 	s64 sval;
206 	u32 insn = le32_to_cpu(*place);
207 
208 	/* Calculate the relocation value. */
209 	sval = do_reloc(op, place, val);
210 	sval >>= lsb;
211 
212 	/* Extract the value bits and shift them to bit 0. */
213 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
214 	imm = sval & imm_mask;
215 
216 	/* Update the instruction's immediate field. */
217 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
218 	*place = cpu_to_le32(insn);
219 
220 	/*
221 	 * Extract the upper value bits (including the sign bit) and
222 	 * shift them to bit 0.
223 	 */
224 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
225 
226 	/*
227 	 * Overflow has occurred if the upper bits are not all equal to
228 	 * the sign bit of the value.
229 	 */
230 	if ((u64)(sval + 1) >= 2)
231 		return -ERANGE;
232 
233 	return 0;
234 }
235 
236 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
237 			   __le32 *place, u64 val)
238 {
239 	u32 insn;
240 
241 	if (!is_forbidden_offset_for_adrp(place))
242 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
243 				      AARCH64_INSN_IMM_ADR);
244 
245 	/* patch ADRP to ADR if it is in range */
246 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
247 			    AARCH64_INSN_IMM_ADR)) {
248 		insn = le32_to_cpu(*place);
249 		insn &= ~BIT(31);
250 	} else {
251 		/* out of range for ADR -> emit a veneer */
252 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
253 		if (!val)
254 			return -ENOEXEC;
255 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
256 						   AARCH64_INSN_BRANCH_NOLINK);
257 	}
258 
259 	*place = cpu_to_le32(insn);
260 	return 0;
261 }
262 
263 int apply_relocate_add(Elf64_Shdr *sechdrs,
264 		       const char *strtab,
265 		       unsigned int symindex,
266 		       unsigned int relsec,
267 		       struct module *me)
268 {
269 	unsigned int i;
270 	int ovf;
271 	bool overflow_check;
272 	Elf64_Sym *sym;
273 	void *loc;
274 	u64 val;
275 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
276 
277 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
278 		/* loc corresponds to P in the AArch64 ELF document. */
279 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
280 			+ rel[i].r_offset;
281 
282 		/* sym is the ELF symbol we're referring to. */
283 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
284 			+ ELF64_R_SYM(rel[i].r_info);
285 
286 		/* val corresponds to (S + A) in the AArch64 ELF document. */
287 		val = sym->st_value + rel[i].r_addend;
288 
289 		/* Check for overflow by default. */
290 		overflow_check = true;
291 
292 		/* Perform the static relocation. */
293 		switch (ELF64_R_TYPE(rel[i].r_info)) {
294 		/* Null relocations. */
295 		case R_ARM_NONE:
296 		case R_AARCH64_NONE:
297 			ovf = 0;
298 			break;
299 
300 		/* Data relocations. */
301 		case R_AARCH64_ABS64:
302 			overflow_check = false;
303 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
304 			break;
305 		case R_AARCH64_ABS32:
306 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
307 			break;
308 		case R_AARCH64_ABS16:
309 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
310 			break;
311 		case R_AARCH64_PREL64:
312 			overflow_check = false;
313 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
314 			break;
315 		case R_AARCH64_PREL32:
316 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
317 			break;
318 		case R_AARCH64_PREL16:
319 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
320 			break;
321 
322 		/* MOVW instruction relocations. */
323 		case R_AARCH64_MOVW_UABS_G0_NC:
324 			overflow_check = false;
325 			fallthrough;
326 		case R_AARCH64_MOVW_UABS_G0:
327 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
328 					      AARCH64_INSN_IMM_MOVKZ);
329 			break;
330 		case R_AARCH64_MOVW_UABS_G1_NC:
331 			overflow_check = false;
332 			fallthrough;
333 		case R_AARCH64_MOVW_UABS_G1:
334 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
335 					      AARCH64_INSN_IMM_MOVKZ);
336 			break;
337 		case R_AARCH64_MOVW_UABS_G2_NC:
338 			overflow_check = false;
339 			fallthrough;
340 		case R_AARCH64_MOVW_UABS_G2:
341 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
342 					      AARCH64_INSN_IMM_MOVKZ);
343 			break;
344 		case R_AARCH64_MOVW_UABS_G3:
345 			/* We're using the top bits so we can't overflow. */
346 			overflow_check = false;
347 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
348 					      AARCH64_INSN_IMM_MOVKZ);
349 			break;
350 		case R_AARCH64_MOVW_SABS_G0:
351 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
352 					      AARCH64_INSN_IMM_MOVNZ);
353 			break;
354 		case R_AARCH64_MOVW_SABS_G1:
355 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
356 					      AARCH64_INSN_IMM_MOVNZ);
357 			break;
358 		case R_AARCH64_MOVW_SABS_G2:
359 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
360 					      AARCH64_INSN_IMM_MOVNZ);
361 			break;
362 		case R_AARCH64_MOVW_PREL_G0_NC:
363 			overflow_check = false;
364 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
365 					      AARCH64_INSN_IMM_MOVKZ);
366 			break;
367 		case R_AARCH64_MOVW_PREL_G0:
368 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
369 					      AARCH64_INSN_IMM_MOVNZ);
370 			break;
371 		case R_AARCH64_MOVW_PREL_G1_NC:
372 			overflow_check = false;
373 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
374 					      AARCH64_INSN_IMM_MOVKZ);
375 			break;
376 		case R_AARCH64_MOVW_PREL_G1:
377 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
378 					      AARCH64_INSN_IMM_MOVNZ);
379 			break;
380 		case R_AARCH64_MOVW_PREL_G2_NC:
381 			overflow_check = false;
382 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
383 					      AARCH64_INSN_IMM_MOVKZ);
384 			break;
385 		case R_AARCH64_MOVW_PREL_G2:
386 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
387 					      AARCH64_INSN_IMM_MOVNZ);
388 			break;
389 		case R_AARCH64_MOVW_PREL_G3:
390 			/* We're using the top bits so we can't overflow. */
391 			overflow_check = false;
392 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
393 					      AARCH64_INSN_IMM_MOVNZ);
394 			break;
395 
396 		/* Immediate instruction relocations. */
397 		case R_AARCH64_LD_PREL_LO19:
398 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
399 					     AARCH64_INSN_IMM_19);
400 			break;
401 		case R_AARCH64_ADR_PREL_LO21:
402 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
403 					     AARCH64_INSN_IMM_ADR);
404 			break;
405 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
406 			overflow_check = false;
407 			fallthrough;
408 		case R_AARCH64_ADR_PREL_PG_HI21:
409 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
410 			if (ovf && ovf != -ERANGE)
411 				return ovf;
412 			break;
413 		case R_AARCH64_ADD_ABS_LO12_NC:
414 		case R_AARCH64_LDST8_ABS_LO12_NC:
415 			overflow_check = false;
416 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
417 					     AARCH64_INSN_IMM_12);
418 			break;
419 		case R_AARCH64_LDST16_ABS_LO12_NC:
420 			overflow_check = false;
421 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
422 					     AARCH64_INSN_IMM_12);
423 			break;
424 		case R_AARCH64_LDST32_ABS_LO12_NC:
425 			overflow_check = false;
426 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
427 					     AARCH64_INSN_IMM_12);
428 			break;
429 		case R_AARCH64_LDST64_ABS_LO12_NC:
430 			overflow_check = false;
431 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
432 					     AARCH64_INSN_IMM_12);
433 			break;
434 		case R_AARCH64_LDST128_ABS_LO12_NC:
435 			overflow_check = false;
436 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
437 					     AARCH64_INSN_IMM_12);
438 			break;
439 		case R_AARCH64_TSTBR14:
440 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
441 					     AARCH64_INSN_IMM_14);
442 			break;
443 		case R_AARCH64_CONDBR19:
444 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
445 					     AARCH64_INSN_IMM_19);
446 			break;
447 		case R_AARCH64_JUMP26:
448 		case R_AARCH64_CALL26:
449 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
450 					     AARCH64_INSN_IMM_26);
451 
452 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
453 			    ovf == -ERANGE) {
454 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
455 				if (!val)
456 					return -ENOEXEC;
457 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
458 						     26, AARCH64_INSN_IMM_26);
459 			}
460 			break;
461 
462 		default:
463 			pr_err("module %s: unsupported RELA relocation: %llu\n",
464 			       me->name, ELF64_R_TYPE(rel[i].r_info));
465 			return -ENOEXEC;
466 		}
467 
468 		if (overflow_check && ovf == -ERANGE)
469 			goto overflow;
470 
471 	}
472 
473 	return 0;
474 
475 overflow:
476 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
477 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
478 	return -ENOEXEC;
479 }
480 
481 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
482 {
483 	*plt = get_plt_entry(addr, plt);
484 }
485 
486 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
487 				  const Elf_Shdr *sechdrs,
488 				  struct module *mod)
489 {
490 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
491 	const Elf_Shdr *s;
492 	struct plt_entry *plts;
493 
494 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
495 	if (!s)
496 		return -ENOEXEC;
497 
498 	plts = (void *)s->sh_addr;
499 
500 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
501 
502 	mod->arch.ftrace_trampolines = plts;
503 #endif
504 	return 0;
505 }
506 
507 int module_finalize(const Elf_Ehdr *hdr,
508 		    const Elf_Shdr *sechdrs,
509 		    struct module *me)
510 {
511 	const Elf_Shdr *s;
512 	s = find_section(hdr, sechdrs, ".altinstructions");
513 	if (s)
514 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
515 
516 	if (scs_is_dynamic()) {
517 		s = find_section(hdr, sechdrs, ".init.eh_frame");
518 		if (s)
519 			scs_patch((void *)s->sh_addr, s->sh_size);
520 	}
521 
522 	return module_init_ftrace_plt(hdr, sechdrs, me);
523 }
524