xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * AArch64 loadable module support.
3  *
4  * Copyright (C) 2012 ARM Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/elf.h>
23 #include <linux/gfp.h>
24 #include <linux/kasan.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/moduleloader.h>
28 #include <linux/vmalloc.h>
29 #include <asm/alternative.h>
30 #include <asm/insn.h>
31 #include <asm/sections.h>
32 
33 void *module_alloc(unsigned long size)
34 {
35 	gfp_t gfp_mask = GFP_KERNEL;
36 	void *p;
37 
38 	/* Silence the initial allocation */
39 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
40 		gfp_mask |= __GFP_NOWARN;
41 
42 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
43 				module_alloc_base + MODULES_VSIZE,
44 				gfp_mask, PAGE_KERNEL_EXEC, 0,
45 				NUMA_NO_NODE, __builtin_return_address(0));
46 
47 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
48 	    !IS_ENABLED(CONFIG_KASAN))
49 		/*
50 		 * KASAN can only deal with module allocations being served
51 		 * from the reserved module region, since the remainder of
52 		 * the vmalloc region is already backed by zero shadow pages,
53 		 * and punching holes into it is non-trivial. Since the module
54 		 * region is not randomized when KASAN is enabled, it is even
55 		 * less likely that the module region gets exhausted, so we
56 		 * can simply omit this fallback in that case.
57 		 */
58 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
59 				module_alloc_base + SZ_2G, GFP_KERNEL,
60 				PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
61 				__builtin_return_address(0));
62 
63 	if (p && (kasan_module_alloc(p, size) < 0)) {
64 		vfree(p);
65 		return NULL;
66 	}
67 
68 	return p;
69 }
70 
71 enum aarch64_reloc_op {
72 	RELOC_OP_NONE,
73 	RELOC_OP_ABS,
74 	RELOC_OP_PREL,
75 	RELOC_OP_PAGE,
76 };
77 
78 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
79 {
80 	switch (reloc_op) {
81 	case RELOC_OP_ABS:
82 		return val;
83 	case RELOC_OP_PREL:
84 		return val - (u64)place;
85 	case RELOC_OP_PAGE:
86 		return (val & ~0xfff) - ((u64)place & ~0xfff);
87 	case RELOC_OP_NONE:
88 		return 0;
89 	}
90 
91 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
92 	return 0;
93 }
94 
95 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
96 {
97 	s64 sval = do_reloc(op, place, val);
98 
99 	/*
100 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
101 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
102 	 * or [-2^31, 2^32), respectively. However, in order to be able to
103 	 * detect overflows reliably, we have to choose whether we interpret
104 	 * such quantities as signed or as unsigned, and stick with it.
105 	 * The way we organize our address space requires a signed
106 	 * interpretation of 32-bit relative references, so let's use that
107 	 * for all R_AARCH64_PRELxx relocations. This means our upper
108 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
109 	 */
110 
111 	switch (len) {
112 	case 16:
113 		*(s16 *)place = sval;
114 		switch (op) {
115 		case RELOC_OP_ABS:
116 			if (sval < 0 || sval > U16_MAX)
117 				return -ERANGE;
118 			break;
119 		case RELOC_OP_PREL:
120 			if (sval < S16_MIN || sval > S16_MAX)
121 				return -ERANGE;
122 			break;
123 		default:
124 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
125 			return 0;
126 		}
127 		break;
128 	case 32:
129 		*(s32 *)place = sval;
130 		switch (op) {
131 		case RELOC_OP_ABS:
132 			if (sval < 0 || sval > U32_MAX)
133 				return -ERANGE;
134 			break;
135 		case RELOC_OP_PREL:
136 			if (sval < S32_MIN || sval > S32_MAX)
137 				return -ERANGE;
138 			break;
139 		default:
140 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
141 			return 0;
142 		}
143 		break;
144 	case 64:
145 		*(s64 *)place = sval;
146 		break;
147 	default:
148 		pr_err("Invalid length (%d) for data relocation\n", len);
149 		return 0;
150 	}
151 	return 0;
152 }
153 
154 enum aarch64_insn_movw_imm_type {
155 	AARCH64_INSN_IMM_MOVNZ,
156 	AARCH64_INSN_IMM_MOVKZ,
157 };
158 
159 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
160 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
161 {
162 	u64 imm;
163 	s64 sval;
164 	u32 insn = le32_to_cpu(*place);
165 
166 	sval = do_reloc(op, place, val);
167 	imm = sval >> lsb;
168 
169 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
170 		/*
171 		 * For signed MOVW relocations, we have to manipulate the
172 		 * instruction encoding depending on whether or not the
173 		 * immediate is less than zero.
174 		 */
175 		insn &= ~(3 << 29);
176 		if (sval >= 0) {
177 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
178 			insn |= 2 << 29;
179 		} else {
180 			/*
181 			 * <0: Set the instruction to MOVN (opcode 00b).
182 			 *     Since we've masked the opcode already, we
183 			 *     don't need to do anything other than
184 			 *     inverting the new immediate field.
185 			 */
186 			imm = ~imm;
187 		}
188 	}
189 
190 	/* Update the instruction with the new encoding. */
191 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
192 	*place = cpu_to_le32(insn);
193 
194 	if (imm > U16_MAX)
195 		return -ERANGE;
196 
197 	return 0;
198 }
199 
200 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
201 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
202 {
203 	u64 imm, imm_mask;
204 	s64 sval;
205 	u32 insn = le32_to_cpu(*place);
206 
207 	/* Calculate the relocation value. */
208 	sval = do_reloc(op, place, val);
209 	sval >>= lsb;
210 
211 	/* Extract the value bits and shift them to bit 0. */
212 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
213 	imm = sval & imm_mask;
214 
215 	/* Update the instruction's immediate field. */
216 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
217 	*place = cpu_to_le32(insn);
218 
219 	/*
220 	 * Extract the upper value bits (including the sign bit) and
221 	 * shift them to bit 0.
222 	 */
223 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
224 
225 	/*
226 	 * Overflow has occurred if the upper bits are not all equal to
227 	 * the sign bit of the value.
228 	 */
229 	if ((u64)(sval + 1) >= 2)
230 		return -ERANGE;
231 
232 	return 0;
233 }
234 
235 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
236 			   __le32 *place, u64 val)
237 {
238 	u32 insn;
239 
240 	if (!is_forbidden_offset_for_adrp(place))
241 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
242 				      AARCH64_INSN_IMM_ADR);
243 
244 	/* patch ADRP to ADR if it is in range */
245 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
246 			    AARCH64_INSN_IMM_ADR)) {
247 		insn = le32_to_cpu(*place);
248 		insn &= ~BIT(31);
249 	} else {
250 		/* out of range for ADR -> emit a veneer */
251 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
252 		if (!val)
253 			return -ENOEXEC;
254 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
255 						   AARCH64_INSN_BRANCH_NOLINK);
256 	}
257 
258 	*place = cpu_to_le32(insn);
259 	return 0;
260 }
261 
262 int apply_relocate_add(Elf64_Shdr *sechdrs,
263 		       const char *strtab,
264 		       unsigned int symindex,
265 		       unsigned int relsec,
266 		       struct module *me)
267 {
268 	unsigned int i;
269 	int ovf;
270 	bool overflow_check;
271 	Elf64_Sym *sym;
272 	void *loc;
273 	u64 val;
274 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
275 
276 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
277 		/* loc corresponds to P in the AArch64 ELF document. */
278 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
279 			+ rel[i].r_offset;
280 
281 		/* sym is the ELF symbol we're referring to. */
282 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
283 			+ ELF64_R_SYM(rel[i].r_info);
284 
285 		/* val corresponds to (S + A) in the AArch64 ELF document. */
286 		val = sym->st_value + rel[i].r_addend;
287 
288 		/* Check for overflow by default. */
289 		overflow_check = true;
290 
291 		/* Perform the static relocation. */
292 		switch (ELF64_R_TYPE(rel[i].r_info)) {
293 		/* Null relocations. */
294 		case R_ARM_NONE:
295 		case R_AARCH64_NONE:
296 			ovf = 0;
297 			break;
298 
299 		/* Data relocations. */
300 		case R_AARCH64_ABS64:
301 			overflow_check = false;
302 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
303 			break;
304 		case R_AARCH64_ABS32:
305 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
306 			break;
307 		case R_AARCH64_ABS16:
308 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
309 			break;
310 		case R_AARCH64_PREL64:
311 			overflow_check = false;
312 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
313 			break;
314 		case R_AARCH64_PREL32:
315 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
316 			break;
317 		case R_AARCH64_PREL16:
318 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
319 			break;
320 
321 		/* MOVW instruction relocations. */
322 		case R_AARCH64_MOVW_UABS_G0_NC:
323 			overflow_check = false;
324 		case R_AARCH64_MOVW_UABS_G0:
325 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
326 					      AARCH64_INSN_IMM_MOVKZ);
327 			break;
328 		case R_AARCH64_MOVW_UABS_G1_NC:
329 			overflow_check = false;
330 		case R_AARCH64_MOVW_UABS_G1:
331 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
332 					      AARCH64_INSN_IMM_MOVKZ);
333 			break;
334 		case R_AARCH64_MOVW_UABS_G2_NC:
335 			overflow_check = false;
336 		case R_AARCH64_MOVW_UABS_G2:
337 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
338 					      AARCH64_INSN_IMM_MOVKZ);
339 			break;
340 		case R_AARCH64_MOVW_UABS_G3:
341 			/* We're using the top bits so we can't overflow. */
342 			overflow_check = false;
343 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
344 					      AARCH64_INSN_IMM_MOVKZ);
345 			break;
346 		case R_AARCH64_MOVW_SABS_G0:
347 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
348 					      AARCH64_INSN_IMM_MOVNZ);
349 			break;
350 		case R_AARCH64_MOVW_SABS_G1:
351 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
352 					      AARCH64_INSN_IMM_MOVNZ);
353 			break;
354 		case R_AARCH64_MOVW_SABS_G2:
355 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
356 					      AARCH64_INSN_IMM_MOVNZ);
357 			break;
358 		case R_AARCH64_MOVW_PREL_G0_NC:
359 			overflow_check = false;
360 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
361 					      AARCH64_INSN_IMM_MOVKZ);
362 			break;
363 		case R_AARCH64_MOVW_PREL_G0:
364 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
365 					      AARCH64_INSN_IMM_MOVNZ);
366 			break;
367 		case R_AARCH64_MOVW_PREL_G1_NC:
368 			overflow_check = false;
369 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
370 					      AARCH64_INSN_IMM_MOVKZ);
371 			break;
372 		case R_AARCH64_MOVW_PREL_G1:
373 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
374 					      AARCH64_INSN_IMM_MOVNZ);
375 			break;
376 		case R_AARCH64_MOVW_PREL_G2_NC:
377 			overflow_check = false;
378 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
379 					      AARCH64_INSN_IMM_MOVKZ);
380 			break;
381 		case R_AARCH64_MOVW_PREL_G2:
382 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
383 					      AARCH64_INSN_IMM_MOVNZ);
384 			break;
385 		case R_AARCH64_MOVW_PREL_G3:
386 			/* We're using the top bits so we can't overflow. */
387 			overflow_check = false;
388 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
389 					      AARCH64_INSN_IMM_MOVNZ);
390 			break;
391 
392 		/* Immediate instruction relocations. */
393 		case R_AARCH64_LD_PREL_LO19:
394 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
395 					     AARCH64_INSN_IMM_19);
396 			break;
397 		case R_AARCH64_ADR_PREL_LO21:
398 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
399 					     AARCH64_INSN_IMM_ADR);
400 			break;
401 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
402 			overflow_check = false;
403 		case R_AARCH64_ADR_PREL_PG_HI21:
404 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
405 			if (ovf && ovf != -ERANGE)
406 				return ovf;
407 			break;
408 		case R_AARCH64_ADD_ABS_LO12_NC:
409 		case R_AARCH64_LDST8_ABS_LO12_NC:
410 			overflow_check = false;
411 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
412 					     AARCH64_INSN_IMM_12);
413 			break;
414 		case R_AARCH64_LDST16_ABS_LO12_NC:
415 			overflow_check = false;
416 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
417 					     AARCH64_INSN_IMM_12);
418 			break;
419 		case R_AARCH64_LDST32_ABS_LO12_NC:
420 			overflow_check = false;
421 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
422 					     AARCH64_INSN_IMM_12);
423 			break;
424 		case R_AARCH64_LDST64_ABS_LO12_NC:
425 			overflow_check = false;
426 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
427 					     AARCH64_INSN_IMM_12);
428 			break;
429 		case R_AARCH64_LDST128_ABS_LO12_NC:
430 			overflow_check = false;
431 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
432 					     AARCH64_INSN_IMM_12);
433 			break;
434 		case R_AARCH64_TSTBR14:
435 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
436 					     AARCH64_INSN_IMM_14);
437 			break;
438 		case R_AARCH64_CONDBR19:
439 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
440 					     AARCH64_INSN_IMM_19);
441 			break;
442 		case R_AARCH64_JUMP26:
443 		case R_AARCH64_CALL26:
444 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
445 					     AARCH64_INSN_IMM_26);
446 
447 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
448 			    ovf == -ERANGE) {
449 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
450 				if (!val)
451 					return -ENOEXEC;
452 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
453 						     26, AARCH64_INSN_IMM_26);
454 			}
455 			break;
456 
457 		default:
458 			pr_err("module %s: unsupported RELA relocation: %llu\n",
459 			       me->name, ELF64_R_TYPE(rel[i].r_info));
460 			return -ENOEXEC;
461 		}
462 
463 		if (overflow_check && ovf == -ERANGE)
464 			goto overflow;
465 
466 	}
467 
468 	return 0;
469 
470 overflow:
471 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
473 	return -ENOEXEC;
474 }
475 
476 int module_finalize(const Elf_Ehdr *hdr,
477 		    const Elf_Shdr *sechdrs,
478 		    struct module *me)
479 {
480 	const Elf_Shdr *s, *se;
481 	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
482 
483 	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
484 		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
485 			apply_alternatives_module((void *)s->sh_addr, s->sh_size);
486 #ifdef CONFIG_ARM64_MODULE_PLTS
487 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
488 		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
489 			me->arch.ftrace_trampoline = (void *)s->sh_addr;
490 #endif
491 	}
492 
493 	return 0;
494 }
495