xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/vmalloc.h>
19 #include <asm/alternative.h>
20 #include <asm/insn.h>
21 #include <asm/sections.h>
22 
23 void *module_alloc(unsigned long size)
24 {
25 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
26 	gfp_t gfp_mask = GFP_KERNEL;
27 	void *p;
28 
29 	/* Silence the initial allocation */
30 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
31 		gfp_mask |= __GFP_NOWARN;
32 
33 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
34 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
35 		/* don't exceed the static module region - see below */
36 		module_alloc_end = MODULES_END;
37 
38 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
39 				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
40 				NUMA_NO_NODE, __builtin_return_address(0));
41 
42 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
43 	    !IS_ENABLED(CONFIG_KASAN_GENERIC) &&
44 	    !IS_ENABLED(CONFIG_KASAN_SW_TAGS))
45 		/*
46 		 * KASAN can only deal with module allocations being served
47 		 * from the reserved module region, since the remainder of
48 		 * the vmalloc region is already backed by zero shadow pages,
49 		 * and punching holes into it is non-trivial. Since the module
50 		 * region is not randomized when KASAN is enabled, it is even
51 		 * less likely that the module region gets exhausted, so we
52 		 * can simply omit this fallback in that case.
53 		 */
54 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
55 				module_alloc_base + SZ_2G, GFP_KERNEL,
56 				PAGE_KERNEL, 0, NUMA_NO_NODE,
57 				__builtin_return_address(0));
58 
59 	if (p && (kasan_module_alloc(p, size) < 0)) {
60 		vfree(p);
61 		return NULL;
62 	}
63 
64 	return p;
65 }
66 
67 enum aarch64_reloc_op {
68 	RELOC_OP_NONE,
69 	RELOC_OP_ABS,
70 	RELOC_OP_PREL,
71 	RELOC_OP_PAGE,
72 };
73 
74 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
75 {
76 	switch (reloc_op) {
77 	case RELOC_OP_ABS:
78 		return val;
79 	case RELOC_OP_PREL:
80 		return val - (u64)place;
81 	case RELOC_OP_PAGE:
82 		return (val & ~0xfff) - ((u64)place & ~0xfff);
83 	case RELOC_OP_NONE:
84 		return 0;
85 	}
86 
87 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
88 	return 0;
89 }
90 
91 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
92 {
93 	s64 sval = do_reloc(op, place, val);
94 
95 	/*
96 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
97 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
98 	 * or [-2^31, 2^32), respectively. However, in order to be able to
99 	 * detect overflows reliably, we have to choose whether we interpret
100 	 * such quantities as signed or as unsigned, and stick with it.
101 	 * The way we organize our address space requires a signed
102 	 * interpretation of 32-bit relative references, so let's use that
103 	 * for all R_AARCH64_PRELxx relocations. This means our upper
104 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
105 	 */
106 
107 	switch (len) {
108 	case 16:
109 		*(s16 *)place = sval;
110 		switch (op) {
111 		case RELOC_OP_ABS:
112 			if (sval < 0 || sval > U16_MAX)
113 				return -ERANGE;
114 			break;
115 		case RELOC_OP_PREL:
116 			if (sval < S16_MIN || sval > S16_MAX)
117 				return -ERANGE;
118 			break;
119 		default:
120 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
121 			return 0;
122 		}
123 		break;
124 	case 32:
125 		*(s32 *)place = sval;
126 		switch (op) {
127 		case RELOC_OP_ABS:
128 			if (sval < 0 || sval > U32_MAX)
129 				return -ERANGE;
130 			break;
131 		case RELOC_OP_PREL:
132 			if (sval < S32_MIN || sval > S32_MAX)
133 				return -ERANGE;
134 			break;
135 		default:
136 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
137 			return 0;
138 		}
139 		break;
140 	case 64:
141 		*(s64 *)place = sval;
142 		break;
143 	default:
144 		pr_err("Invalid length (%d) for data relocation\n", len);
145 		return 0;
146 	}
147 	return 0;
148 }
149 
150 enum aarch64_insn_movw_imm_type {
151 	AARCH64_INSN_IMM_MOVNZ,
152 	AARCH64_INSN_IMM_MOVKZ,
153 };
154 
155 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
156 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
157 {
158 	u64 imm;
159 	s64 sval;
160 	u32 insn = le32_to_cpu(*place);
161 
162 	sval = do_reloc(op, place, val);
163 	imm = sval >> lsb;
164 
165 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
166 		/*
167 		 * For signed MOVW relocations, we have to manipulate the
168 		 * instruction encoding depending on whether or not the
169 		 * immediate is less than zero.
170 		 */
171 		insn &= ~(3 << 29);
172 		if (sval >= 0) {
173 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
174 			insn |= 2 << 29;
175 		} else {
176 			/*
177 			 * <0: Set the instruction to MOVN (opcode 00b).
178 			 *     Since we've masked the opcode already, we
179 			 *     don't need to do anything other than
180 			 *     inverting the new immediate field.
181 			 */
182 			imm = ~imm;
183 		}
184 	}
185 
186 	/* Update the instruction with the new encoding. */
187 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
188 	*place = cpu_to_le32(insn);
189 
190 	if (imm > U16_MAX)
191 		return -ERANGE;
192 
193 	return 0;
194 }
195 
196 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
197 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
198 {
199 	u64 imm, imm_mask;
200 	s64 sval;
201 	u32 insn = le32_to_cpu(*place);
202 
203 	/* Calculate the relocation value. */
204 	sval = do_reloc(op, place, val);
205 	sval >>= lsb;
206 
207 	/* Extract the value bits and shift them to bit 0. */
208 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
209 	imm = sval & imm_mask;
210 
211 	/* Update the instruction's immediate field. */
212 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
213 	*place = cpu_to_le32(insn);
214 
215 	/*
216 	 * Extract the upper value bits (including the sign bit) and
217 	 * shift them to bit 0.
218 	 */
219 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
220 
221 	/*
222 	 * Overflow has occurred if the upper bits are not all equal to
223 	 * the sign bit of the value.
224 	 */
225 	if ((u64)(sval + 1) >= 2)
226 		return -ERANGE;
227 
228 	return 0;
229 }
230 
231 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
232 			   __le32 *place, u64 val)
233 {
234 	u32 insn;
235 
236 	if (!is_forbidden_offset_for_adrp(place))
237 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
238 				      AARCH64_INSN_IMM_ADR);
239 
240 	/* patch ADRP to ADR if it is in range */
241 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
242 			    AARCH64_INSN_IMM_ADR)) {
243 		insn = le32_to_cpu(*place);
244 		insn &= ~BIT(31);
245 	} else {
246 		/* out of range for ADR -> emit a veneer */
247 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
248 		if (!val)
249 			return -ENOEXEC;
250 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
251 						   AARCH64_INSN_BRANCH_NOLINK);
252 	}
253 
254 	*place = cpu_to_le32(insn);
255 	return 0;
256 }
257 
258 int apply_relocate_add(Elf64_Shdr *sechdrs,
259 		       const char *strtab,
260 		       unsigned int symindex,
261 		       unsigned int relsec,
262 		       struct module *me)
263 {
264 	unsigned int i;
265 	int ovf;
266 	bool overflow_check;
267 	Elf64_Sym *sym;
268 	void *loc;
269 	u64 val;
270 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
271 
272 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
273 		/* loc corresponds to P in the AArch64 ELF document. */
274 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
275 			+ rel[i].r_offset;
276 
277 		/* sym is the ELF symbol we're referring to. */
278 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
279 			+ ELF64_R_SYM(rel[i].r_info);
280 
281 		/* val corresponds to (S + A) in the AArch64 ELF document. */
282 		val = sym->st_value + rel[i].r_addend;
283 
284 		/* Check for overflow by default. */
285 		overflow_check = true;
286 
287 		/* Perform the static relocation. */
288 		switch (ELF64_R_TYPE(rel[i].r_info)) {
289 		/* Null relocations. */
290 		case R_ARM_NONE:
291 		case R_AARCH64_NONE:
292 			ovf = 0;
293 			break;
294 
295 		/* Data relocations. */
296 		case R_AARCH64_ABS64:
297 			overflow_check = false;
298 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
299 			break;
300 		case R_AARCH64_ABS32:
301 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
302 			break;
303 		case R_AARCH64_ABS16:
304 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
305 			break;
306 		case R_AARCH64_PREL64:
307 			overflow_check = false;
308 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
309 			break;
310 		case R_AARCH64_PREL32:
311 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
312 			break;
313 		case R_AARCH64_PREL16:
314 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
315 			break;
316 
317 		/* MOVW instruction relocations. */
318 		case R_AARCH64_MOVW_UABS_G0_NC:
319 			overflow_check = false;
320 			fallthrough;
321 		case R_AARCH64_MOVW_UABS_G0:
322 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
323 					      AARCH64_INSN_IMM_MOVKZ);
324 			break;
325 		case R_AARCH64_MOVW_UABS_G1_NC:
326 			overflow_check = false;
327 			fallthrough;
328 		case R_AARCH64_MOVW_UABS_G1:
329 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
330 					      AARCH64_INSN_IMM_MOVKZ);
331 			break;
332 		case R_AARCH64_MOVW_UABS_G2_NC:
333 			overflow_check = false;
334 			fallthrough;
335 		case R_AARCH64_MOVW_UABS_G2:
336 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
337 					      AARCH64_INSN_IMM_MOVKZ);
338 			break;
339 		case R_AARCH64_MOVW_UABS_G3:
340 			/* We're using the top bits so we can't overflow. */
341 			overflow_check = false;
342 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
343 					      AARCH64_INSN_IMM_MOVKZ);
344 			break;
345 		case R_AARCH64_MOVW_SABS_G0:
346 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
347 					      AARCH64_INSN_IMM_MOVNZ);
348 			break;
349 		case R_AARCH64_MOVW_SABS_G1:
350 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
351 					      AARCH64_INSN_IMM_MOVNZ);
352 			break;
353 		case R_AARCH64_MOVW_SABS_G2:
354 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
355 					      AARCH64_INSN_IMM_MOVNZ);
356 			break;
357 		case R_AARCH64_MOVW_PREL_G0_NC:
358 			overflow_check = false;
359 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
360 					      AARCH64_INSN_IMM_MOVKZ);
361 			break;
362 		case R_AARCH64_MOVW_PREL_G0:
363 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
364 					      AARCH64_INSN_IMM_MOVNZ);
365 			break;
366 		case R_AARCH64_MOVW_PREL_G1_NC:
367 			overflow_check = false;
368 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
369 					      AARCH64_INSN_IMM_MOVKZ);
370 			break;
371 		case R_AARCH64_MOVW_PREL_G1:
372 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
373 					      AARCH64_INSN_IMM_MOVNZ);
374 			break;
375 		case R_AARCH64_MOVW_PREL_G2_NC:
376 			overflow_check = false;
377 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
378 					      AARCH64_INSN_IMM_MOVKZ);
379 			break;
380 		case R_AARCH64_MOVW_PREL_G2:
381 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
382 					      AARCH64_INSN_IMM_MOVNZ);
383 			break;
384 		case R_AARCH64_MOVW_PREL_G3:
385 			/* We're using the top bits so we can't overflow. */
386 			overflow_check = false;
387 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
388 					      AARCH64_INSN_IMM_MOVNZ);
389 			break;
390 
391 		/* Immediate instruction relocations. */
392 		case R_AARCH64_LD_PREL_LO19:
393 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
394 					     AARCH64_INSN_IMM_19);
395 			break;
396 		case R_AARCH64_ADR_PREL_LO21:
397 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
398 					     AARCH64_INSN_IMM_ADR);
399 			break;
400 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
401 			overflow_check = false;
402 			fallthrough;
403 		case R_AARCH64_ADR_PREL_PG_HI21:
404 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
405 			if (ovf && ovf != -ERANGE)
406 				return ovf;
407 			break;
408 		case R_AARCH64_ADD_ABS_LO12_NC:
409 		case R_AARCH64_LDST8_ABS_LO12_NC:
410 			overflow_check = false;
411 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
412 					     AARCH64_INSN_IMM_12);
413 			break;
414 		case R_AARCH64_LDST16_ABS_LO12_NC:
415 			overflow_check = false;
416 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
417 					     AARCH64_INSN_IMM_12);
418 			break;
419 		case R_AARCH64_LDST32_ABS_LO12_NC:
420 			overflow_check = false;
421 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
422 					     AARCH64_INSN_IMM_12);
423 			break;
424 		case R_AARCH64_LDST64_ABS_LO12_NC:
425 			overflow_check = false;
426 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
427 					     AARCH64_INSN_IMM_12);
428 			break;
429 		case R_AARCH64_LDST128_ABS_LO12_NC:
430 			overflow_check = false;
431 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
432 					     AARCH64_INSN_IMM_12);
433 			break;
434 		case R_AARCH64_TSTBR14:
435 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
436 					     AARCH64_INSN_IMM_14);
437 			break;
438 		case R_AARCH64_CONDBR19:
439 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
440 					     AARCH64_INSN_IMM_19);
441 			break;
442 		case R_AARCH64_JUMP26:
443 		case R_AARCH64_CALL26:
444 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
445 					     AARCH64_INSN_IMM_26);
446 
447 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
448 			    ovf == -ERANGE) {
449 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
450 				if (!val)
451 					return -ENOEXEC;
452 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
453 						     26, AARCH64_INSN_IMM_26);
454 			}
455 			break;
456 
457 		default:
458 			pr_err("module %s: unsupported RELA relocation: %llu\n",
459 			       me->name, ELF64_R_TYPE(rel[i].r_info));
460 			return -ENOEXEC;
461 		}
462 
463 		if (overflow_check && ovf == -ERANGE)
464 			goto overflow;
465 
466 	}
467 
468 	return 0;
469 
470 overflow:
471 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
473 	return -ENOEXEC;
474 }
475 
476 static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
477 				    const Elf_Shdr *sechdrs,
478 				    const char *name)
479 {
480 	const Elf_Shdr *s, *se;
481 	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
482 
483 	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
484 		if (strcmp(name, secstrs + s->sh_name) == 0)
485 			return s;
486 	}
487 
488 	return NULL;
489 }
490 
491 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
492 {
493 	*plt = get_plt_entry(addr, plt);
494 }
495 
496 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
497 				  const Elf_Shdr *sechdrs,
498 				  struct module *mod)
499 {
500 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
501 	const Elf_Shdr *s;
502 	struct plt_entry *plts;
503 
504 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
505 	if (!s)
506 		return -ENOEXEC;
507 
508 	plts = (void *)s->sh_addr;
509 
510 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
511 
512 	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
513 		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
514 
515 	mod->arch.ftrace_trampolines = plts;
516 #endif
517 	return 0;
518 }
519 
520 int module_finalize(const Elf_Ehdr *hdr,
521 		    const Elf_Shdr *sechdrs,
522 		    struct module *me)
523 {
524 	const Elf_Shdr *s;
525 	s = find_section(hdr, sechdrs, ".altinstructions");
526 	if (s)
527 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
528 
529 	return module_init_ftrace_plt(hdr, sechdrs, me);
530 }
531