xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/gfp.h>
13 #include <linux/kasan.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/moduleloader.h>
17 #include <linux/vmalloc.h>
18 #include <asm/alternative.h>
19 #include <asm/insn.h>
20 #include <asm/sections.h>
21 
22 void *module_alloc(unsigned long size)
23 {
24 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
25 	gfp_t gfp_mask = GFP_KERNEL;
26 	void *p;
27 
28 	/* Silence the initial allocation */
29 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
30 		gfp_mask |= __GFP_NOWARN;
31 
32 	if (IS_ENABLED(CONFIG_KASAN))
33 		/* don't exceed the static module region - see below */
34 		module_alloc_end = MODULES_END;
35 
36 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
37 				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
38 				NUMA_NO_NODE, __builtin_return_address(0));
39 
40 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
41 	    !IS_ENABLED(CONFIG_KASAN))
42 		/*
43 		 * KASAN can only deal with module allocations being served
44 		 * from the reserved module region, since the remainder of
45 		 * the vmalloc region is already backed by zero shadow pages,
46 		 * and punching holes into it is non-trivial. Since the module
47 		 * region is not randomized when KASAN is enabled, it is even
48 		 * less likely that the module region gets exhausted, so we
49 		 * can simply omit this fallback in that case.
50 		 */
51 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
52 				module_alloc_base + SZ_2G, GFP_KERNEL,
53 				PAGE_KERNEL, 0, NUMA_NO_NODE,
54 				__builtin_return_address(0));
55 
56 	if (p && (kasan_module_alloc(p, size) < 0)) {
57 		vfree(p);
58 		return NULL;
59 	}
60 
61 	return p;
62 }
63 
64 enum aarch64_reloc_op {
65 	RELOC_OP_NONE,
66 	RELOC_OP_ABS,
67 	RELOC_OP_PREL,
68 	RELOC_OP_PAGE,
69 };
70 
71 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
72 {
73 	switch (reloc_op) {
74 	case RELOC_OP_ABS:
75 		return val;
76 	case RELOC_OP_PREL:
77 		return val - (u64)place;
78 	case RELOC_OP_PAGE:
79 		return (val & ~0xfff) - ((u64)place & ~0xfff);
80 	case RELOC_OP_NONE:
81 		return 0;
82 	}
83 
84 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
85 	return 0;
86 }
87 
88 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
89 {
90 	s64 sval = do_reloc(op, place, val);
91 
92 	/*
93 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
94 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
95 	 * or [-2^31, 2^32), respectively. However, in order to be able to
96 	 * detect overflows reliably, we have to choose whether we interpret
97 	 * such quantities as signed or as unsigned, and stick with it.
98 	 * The way we organize our address space requires a signed
99 	 * interpretation of 32-bit relative references, so let's use that
100 	 * for all R_AARCH64_PRELxx relocations. This means our upper
101 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
102 	 */
103 
104 	switch (len) {
105 	case 16:
106 		*(s16 *)place = sval;
107 		switch (op) {
108 		case RELOC_OP_ABS:
109 			if (sval < 0 || sval > U16_MAX)
110 				return -ERANGE;
111 			break;
112 		case RELOC_OP_PREL:
113 			if (sval < S16_MIN || sval > S16_MAX)
114 				return -ERANGE;
115 			break;
116 		default:
117 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
118 			return 0;
119 		}
120 		break;
121 	case 32:
122 		*(s32 *)place = sval;
123 		switch (op) {
124 		case RELOC_OP_ABS:
125 			if (sval < 0 || sval > U32_MAX)
126 				return -ERANGE;
127 			break;
128 		case RELOC_OP_PREL:
129 			if (sval < S32_MIN || sval > S32_MAX)
130 				return -ERANGE;
131 			break;
132 		default:
133 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
134 			return 0;
135 		}
136 		break;
137 	case 64:
138 		*(s64 *)place = sval;
139 		break;
140 	default:
141 		pr_err("Invalid length (%d) for data relocation\n", len);
142 		return 0;
143 	}
144 	return 0;
145 }
146 
147 enum aarch64_insn_movw_imm_type {
148 	AARCH64_INSN_IMM_MOVNZ,
149 	AARCH64_INSN_IMM_MOVKZ,
150 };
151 
152 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
153 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
154 {
155 	u64 imm;
156 	s64 sval;
157 	u32 insn = le32_to_cpu(*place);
158 
159 	sval = do_reloc(op, place, val);
160 	imm = sval >> lsb;
161 
162 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
163 		/*
164 		 * For signed MOVW relocations, we have to manipulate the
165 		 * instruction encoding depending on whether or not the
166 		 * immediate is less than zero.
167 		 */
168 		insn &= ~(3 << 29);
169 		if (sval >= 0) {
170 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
171 			insn |= 2 << 29;
172 		} else {
173 			/*
174 			 * <0: Set the instruction to MOVN (opcode 00b).
175 			 *     Since we've masked the opcode already, we
176 			 *     don't need to do anything other than
177 			 *     inverting the new immediate field.
178 			 */
179 			imm = ~imm;
180 		}
181 	}
182 
183 	/* Update the instruction with the new encoding. */
184 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
185 	*place = cpu_to_le32(insn);
186 
187 	if (imm > U16_MAX)
188 		return -ERANGE;
189 
190 	return 0;
191 }
192 
193 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
194 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
195 {
196 	u64 imm, imm_mask;
197 	s64 sval;
198 	u32 insn = le32_to_cpu(*place);
199 
200 	/* Calculate the relocation value. */
201 	sval = do_reloc(op, place, val);
202 	sval >>= lsb;
203 
204 	/* Extract the value bits and shift them to bit 0. */
205 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
206 	imm = sval & imm_mask;
207 
208 	/* Update the instruction's immediate field. */
209 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
210 	*place = cpu_to_le32(insn);
211 
212 	/*
213 	 * Extract the upper value bits (including the sign bit) and
214 	 * shift them to bit 0.
215 	 */
216 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
217 
218 	/*
219 	 * Overflow has occurred if the upper bits are not all equal to
220 	 * the sign bit of the value.
221 	 */
222 	if ((u64)(sval + 1) >= 2)
223 		return -ERANGE;
224 
225 	return 0;
226 }
227 
228 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
229 			   __le32 *place, u64 val)
230 {
231 	u32 insn;
232 
233 	if (!is_forbidden_offset_for_adrp(place))
234 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
235 				      AARCH64_INSN_IMM_ADR);
236 
237 	/* patch ADRP to ADR if it is in range */
238 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
239 			    AARCH64_INSN_IMM_ADR)) {
240 		insn = le32_to_cpu(*place);
241 		insn &= ~BIT(31);
242 	} else {
243 		/* out of range for ADR -> emit a veneer */
244 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
245 		if (!val)
246 			return -ENOEXEC;
247 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
248 						   AARCH64_INSN_BRANCH_NOLINK);
249 	}
250 
251 	*place = cpu_to_le32(insn);
252 	return 0;
253 }
254 
255 int apply_relocate_add(Elf64_Shdr *sechdrs,
256 		       const char *strtab,
257 		       unsigned int symindex,
258 		       unsigned int relsec,
259 		       struct module *me)
260 {
261 	unsigned int i;
262 	int ovf;
263 	bool overflow_check;
264 	Elf64_Sym *sym;
265 	void *loc;
266 	u64 val;
267 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
268 
269 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
270 		/* loc corresponds to P in the AArch64 ELF document. */
271 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
272 			+ rel[i].r_offset;
273 
274 		/* sym is the ELF symbol we're referring to. */
275 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
276 			+ ELF64_R_SYM(rel[i].r_info);
277 
278 		/* val corresponds to (S + A) in the AArch64 ELF document. */
279 		val = sym->st_value + rel[i].r_addend;
280 
281 		/* Check for overflow by default. */
282 		overflow_check = true;
283 
284 		/* Perform the static relocation. */
285 		switch (ELF64_R_TYPE(rel[i].r_info)) {
286 		/* Null relocations. */
287 		case R_ARM_NONE:
288 		case R_AARCH64_NONE:
289 			ovf = 0;
290 			break;
291 
292 		/* Data relocations. */
293 		case R_AARCH64_ABS64:
294 			overflow_check = false;
295 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
296 			break;
297 		case R_AARCH64_ABS32:
298 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
299 			break;
300 		case R_AARCH64_ABS16:
301 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
302 			break;
303 		case R_AARCH64_PREL64:
304 			overflow_check = false;
305 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
306 			break;
307 		case R_AARCH64_PREL32:
308 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
309 			break;
310 		case R_AARCH64_PREL16:
311 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
312 			break;
313 
314 		/* MOVW instruction relocations. */
315 		case R_AARCH64_MOVW_UABS_G0_NC:
316 			overflow_check = false;
317 			/* Fall through */
318 		case R_AARCH64_MOVW_UABS_G0:
319 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
320 					      AARCH64_INSN_IMM_MOVKZ);
321 			break;
322 		case R_AARCH64_MOVW_UABS_G1_NC:
323 			overflow_check = false;
324 			/* Fall through */
325 		case R_AARCH64_MOVW_UABS_G1:
326 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
327 					      AARCH64_INSN_IMM_MOVKZ);
328 			break;
329 		case R_AARCH64_MOVW_UABS_G2_NC:
330 			overflow_check = false;
331 			/* Fall through */
332 		case R_AARCH64_MOVW_UABS_G2:
333 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
334 					      AARCH64_INSN_IMM_MOVKZ);
335 			break;
336 		case R_AARCH64_MOVW_UABS_G3:
337 			/* We're using the top bits so we can't overflow. */
338 			overflow_check = false;
339 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
340 					      AARCH64_INSN_IMM_MOVKZ);
341 			break;
342 		case R_AARCH64_MOVW_SABS_G0:
343 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
344 					      AARCH64_INSN_IMM_MOVNZ);
345 			break;
346 		case R_AARCH64_MOVW_SABS_G1:
347 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
348 					      AARCH64_INSN_IMM_MOVNZ);
349 			break;
350 		case R_AARCH64_MOVW_SABS_G2:
351 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
352 					      AARCH64_INSN_IMM_MOVNZ);
353 			break;
354 		case R_AARCH64_MOVW_PREL_G0_NC:
355 			overflow_check = false;
356 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
357 					      AARCH64_INSN_IMM_MOVKZ);
358 			break;
359 		case R_AARCH64_MOVW_PREL_G0:
360 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
361 					      AARCH64_INSN_IMM_MOVNZ);
362 			break;
363 		case R_AARCH64_MOVW_PREL_G1_NC:
364 			overflow_check = false;
365 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
366 					      AARCH64_INSN_IMM_MOVKZ);
367 			break;
368 		case R_AARCH64_MOVW_PREL_G1:
369 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
370 					      AARCH64_INSN_IMM_MOVNZ);
371 			break;
372 		case R_AARCH64_MOVW_PREL_G2_NC:
373 			overflow_check = false;
374 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
375 					      AARCH64_INSN_IMM_MOVKZ);
376 			break;
377 		case R_AARCH64_MOVW_PREL_G2:
378 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
379 					      AARCH64_INSN_IMM_MOVNZ);
380 			break;
381 		case R_AARCH64_MOVW_PREL_G3:
382 			/* We're using the top bits so we can't overflow. */
383 			overflow_check = false;
384 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
385 					      AARCH64_INSN_IMM_MOVNZ);
386 			break;
387 
388 		/* Immediate instruction relocations. */
389 		case R_AARCH64_LD_PREL_LO19:
390 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
391 					     AARCH64_INSN_IMM_19);
392 			break;
393 		case R_AARCH64_ADR_PREL_LO21:
394 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
395 					     AARCH64_INSN_IMM_ADR);
396 			break;
397 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
398 			overflow_check = false;
399 			/* Fall through */
400 		case R_AARCH64_ADR_PREL_PG_HI21:
401 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
402 			if (ovf && ovf != -ERANGE)
403 				return ovf;
404 			break;
405 		case R_AARCH64_ADD_ABS_LO12_NC:
406 		case R_AARCH64_LDST8_ABS_LO12_NC:
407 			overflow_check = false;
408 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
409 					     AARCH64_INSN_IMM_12);
410 			break;
411 		case R_AARCH64_LDST16_ABS_LO12_NC:
412 			overflow_check = false;
413 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
414 					     AARCH64_INSN_IMM_12);
415 			break;
416 		case R_AARCH64_LDST32_ABS_LO12_NC:
417 			overflow_check = false;
418 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
419 					     AARCH64_INSN_IMM_12);
420 			break;
421 		case R_AARCH64_LDST64_ABS_LO12_NC:
422 			overflow_check = false;
423 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
424 					     AARCH64_INSN_IMM_12);
425 			break;
426 		case R_AARCH64_LDST128_ABS_LO12_NC:
427 			overflow_check = false;
428 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
429 					     AARCH64_INSN_IMM_12);
430 			break;
431 		case R_AARCH64_TSTBR14:
432 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
433 					     AARCH64_INSN_IMM_14);
434 			break;
435 		case R_AARCH64_CONDBR19:
436 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
437 					     AARCH64_INSN_IMM_19);
438 			break;
439 		case R_AARCH64_JUMP26:
440 		case R_AARCH64_CALL26:
441 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
442 					     AARCH64_INSN_IMM_26);
443 
444 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
445 			    ovf == -ERANGE) {
446 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
447 				if (!val)
448 					return -ENOEXEC;
449 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
450 						     26, AARCH64_INSN_IMM_26);
451 			}
452 			break;
453 
454 		default:
455 			pr_err("module %s: unsupported RELA relocation: %llu\n",
456 			       me->name, ELF64_R_TYPE(rel[i].r_info));
457 			return -ENOEXEC;
458 		}
459 
460 		if (overflow_check && ovf == -ERANGE)
461 			goto overflow;
462 
463 	}
464 
465 	return 0;
466 
467 overflow:
468 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
469 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
470 	return -ENOEXEC;
471 }
472 
473 int module_finalize(const Elf_Ehdr *hdr,
474 		    const Elf_Shdr *sechdrs,
475 		    struct module *me)
476 {
477 	const Elf_Shdr *s, *se;
478 	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
479 
480 	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
481 		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
482 			apply_alternatives_module((void *)s->sh_addr, s->sh_size);
483 #ifdef CONFIG_ARM64_MODULE_PLTS
484 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
485 		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
486 			me->arch.ftrace_trampoline = (void *)s->sh_addr;
487 #endif
488 	}
489 
490 	return 0;
491 }
492