xref: /openbmc/linux/arch/arm64/kernel/module-plts.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/elf.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sort.h>
13 
14 static bool in_init(const struct module *mod, void *loc)
15 {
16 	return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
17 }
18 
19 u64 module_emit_plt_entry(struct module *mod, void *loc, const Elf64_Rela *rela,
20 			  Elf64_Sym *sym)
21 {
22 	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
23 							  &mod->arch.init;
24 	struct plt_entry *plt = (struct plt_entry *)pltsec->plt->sh_addr;
25 	int i = pltsec->plt_num_entries;
26 	u64 val = sym->st_value + rela->r_addend;
27 
28 	plt[i] = get_plt_entry(val);
29 
30 	/*
31 	 * Check if the entry we just created is a duplicate. Given that the
32 	 * relocations are sorted, this will be the last entry we allocated.
33 	 * (if one exists).
34 	 */
35 	if (i > 0 && plt_entries_equal(plt + i, plt + i - 1))
36 		return (u64)&plt[i - 1];
37 
38 	pltsec->plt_num_entries++;
39 	BUG_ON(pltsec->plt_num_entries > pltsec->plt_max_entries);
40 
41 	return (u64)&plt[i];
42 }
43 
44 #define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
45 
46 static int cmp_rela(const void *a, const void *b)
47 {
48 	const Elf64_Rela *x = a, *y = b;
49 	int i;
50 
51 	/* sort by type, symbol index and addend */
52 	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
53 	if (i == 0)
54 		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
55 	if (i == 0)
56 		i = cmp_3way(x->r_addend, y->r_addend);
57 	return i;
58 }
59 
60 static bool duplicate_rel(const Elf64_Rela *rela, int num)
61 {
62 	/*
63 	 * Entries are sorted by type, symbol index and addend. That means
64 	 * that, if a duplicate entry exists, it must be in the preceding
65 	 * slot.
66 	 */
67 	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
68 }
69 
70 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
71 			       Elf64_Word dstidx)
72 {
73 	unsigned int ret = 0;
74 	Elf64_Sym *s;
75 	int i;
76 
77 	for (i = 0; i < num; i++) {
78 		switch (ELF64_R_TYPE(rela[i].r_info)) {
79 		case R_AARCH64_JUMP26:
80 		case R_AARCH64_CALL26:
81 			/*
82 			 * We only have to consider branch targets that resolve
83 			 * to symbols that are defined in a different section.
84 			 * This is not simply a heuristic, it is a fundamental
85 			 * limitation, since there is no guaranteed way to emit
86 			 * PLT entries sufficiently close to the branch if the
87 			 * section size exceeds the range of a branch
88 			 * instruction. So ignore relocations against defined
89 			 * symbols if they live in the same section as the
90 			 * relocation target.
91 			 */
92 			s = syms + ELF64_R_SYM(rela[i].r_info);
93 			if (s->st_shndx == dstidx)
94 				break;
95 
96 			/*
97 			 * Jump relocations with non-zero addends against
98 			 * undefined symbols are supported by the ELF spec, but
99 			 * do not occur in practice (e.g., 'jump n bytes past
100 			 * the entry point of undefined function symbol f').
101 			 * So we need to support them, but there is no need to
102 			 * take them into consideration when trying to optimize
103 			 * this code. So let's only check for duplicates when
104 			 * the addend is zero: this allows us to record the PLT
105 			 * entry address in the symbol table itself, rather than
106 			 * having to search the list for duplicates each time we
107 			 * emit one.
108 			 */
109 			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
110 				ret++;
111 			break;
112 		}
113 	}
114 	return ret;
115 }
116 
117 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
118 			      char *secstrings, struct module *mod)
119 {
120 	unsigned long core_plts = 0;
121 	unsigned long init_plts = 0;
122 	Elf64_Sym *syms = NULL;
123 	Elf_Shdr *tramp = NULL;
124 	int i;
125 
126 	/*
127 	 * Find the empty .plt section so we can expand it to store the PLT
128 	 * entries. Record the symtab address as well.
129 	 */
130 	for (i = 0; i < ehdr->e_shnum; i++) {
131 		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
132 			mod->arch.core.plt = sechdrs + i;
133 		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
134 			mod->arch.init.plt = sechdrs + i;
135 		else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
136 			 !strcmp(secstrings + sechdrs[i].sh_name,
137 				 ".text.ftrace_trampoline"))
138 			tramp = sechdrs + i;
139 		else if (sechdrs[i].sh_type == SHT_SYMTAB)
140 			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
141 	}
142 
143 	if (!mod->arch.core.plt || !mod->arch.init.plt) {
144 		pr_err("%s: module PLT section(s) missing\n", mod->name);
145 		return -ENOEXEC;
146 	}
147 	if (!syms) {
148 		pr_err("%s: module symtab section missing\n", mod->name);
149 		return -ENOEXEC;
150 	}
151 
152 	for (i = 0; i < ehdr->e_shnum; i++) {
153 		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
154 		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
155 		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
156 
157 		if (sechdrs[i].sh_type != SHT_RELA)
158 			continue;
159 
160 		/* ignore relocations that operate on non-exec sections */
161 		if (!(dstsec->sh_flags & SHF_EXECINSTR))
162 			continue;
163 
164 		/* sort by type, symbol index and addend */
165 		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
166 
167 		if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
168 			core_plts += count_plts(syms, rels, numrels,
169 						sechdrs[i].sh_info);
170 		else
171 			init_plts += count_plts(syms, rels, numrels,
172 						sechdrs[i].sh_info);
173 	}
174 
175 	mod->arch.core.plt->sh_type = SHT_NOBITS;
176 	mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
177 	mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
178 	mod->arch.core.plt->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
179 	mod->arch.core.plt_num_entries = 0;
180 	mod->arch.core.plt_max_entries = core_plts;
181 
182 	mod->arch.init.plt->sh_type = SHT_NOBITS;
183 	mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
184 	mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
185 	mod->arch.init.plt->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
186 	mod->arch.init.plt_num_entries = 0;
187 	mod->arch.init.plt_max_entries = init_plts;
188 
189 	if (tramp) {
190 		tramp->sh_type = SHT_NOBITS;
191 		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
192 		tramp->sh_addralign = __alignof__(struct plt_entry);
193 		tramp->sh_size = sizeof(struct plt_entry);
194 	}
195 
196 	return 0;
197 }
198