1 /*
2  * kexec for arm64
3  *
4  * Copyright (C) Linaro.
5  * Copyright (C) Huawei Futurewei Technologies.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kexec.h>
13 #include <linux/smp.h>
14 
15 #include <asm/cacheflush.h>
16 #include <asm/cpu_ops.h>
17 #include <asm/mmu_context.h>
18 
19 #include "cpu-reset.h"
20 
21 /* Global variables for the arm64_relocate_new_kernel routine. */
22 extern const unsigned char arm64_relocate_new_kernel[];
23 extern const unsigned long arm64_relocate_new_kernel_size;
24 
25 static unsigned long kimage_start;
26 
27 /**
28  * kexec_image_info - For debugging output.
29  */
30 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
31 static void _kexec_image_info(const char *func, int line,
32 	const struct kimage *kimage)
33 {
34 	unsigned long i;
35 
36 	pr_debug("%s:%d:\n", func, line);
37 	pr_debug("  kexec kimage info:\n");
38 	pr_debug("    type:        %d\n", kimage->type);
39 	pr_debug("    start:       %lx\n", kimage->start);
40 	pr_debug("    head:        %lx\n", kimage->head);
41 	pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
42 
43 	for (i = 0; i < kimage->nr_segments; i++) {
44 		pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
45 			i,
46 			kimage->segment[i].mem,
47 			kimage->segment[i].mem + kimage->segment[i].memsz,
48 			kimage->segment[i].memsz,
49 			kimage->segment[i].memsz /  PAGE_SIZE);
50 	}
51 }
52 
53 void machine_kexec_cleanup(struct kimage *kimage)
54 {
55 	/* Empty routine needed to avoid build errors. */
56 }
57 
58 /**
59  * machine_kexec_prepare - Prepare for a kexec reboot.
60  *
61  * Called from the core kexec code when a kernel image is loaded.
62  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
63  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
64  */
65 int machine_kexec_prepare(struct kimage *kimage)
66 {
67 	kimage_start = kimage->start;
68 
69 	kexec_image_info(kimage);
70 
71 	if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
72 		pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
73 		return -EBUSY;
74 	}
75 
76 	return 0;
77 }
78 
79 /**
80  * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
81  */
82 static void kexec_list_flush(struct kimage *kimage)
83 {
84 	kimage_entry_t *entry;
85 
86 	for (entry = &kimage->head; ; entry++) {
87 		unsigned int flag;
88 		void *addr;
89 
90 		/* flush the list entries. */
91 		__flush_dcache_area(entry, sizeof(kimage_entry_t));
92 
93 		flag = *entry & IND_FLAGS;
94 		if (flag == IND_DONE)
95 			break;
96 
97 		addr = phys_to_virt(*entry & PAGE_MASK);
98 
99 		switch (flag) {
100 		case IND_INDIRECTION:
101 			/* Set entry point just before the new list page. */
102 			entry = (kimage_entry_t *)addr - 1;
103 			break;
104 		case IND_SOURCE:
105 			/* flush the source pages. */
106 			__flush_dcache_area(addr, PAGE_SIZE);
107 			break;
108 		case IND_DESTINATION:
109 			break;
110 		default:
111 			BUG();
112 		}
113 	}
114 }
115 
116 /**
117  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
118  */
119 static void kexec_segment_flush(const struct kimage *kimage)
120 {
121 	unsigned long i;
122 
123 	pr_debug("%s:\n", __func__);
124 
125 	for (i = 0; i < kimage->nr_segments; i++) {
126 		pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
127 			i,
128 			kimage->segment[i].mem,
129 			kimage->segment[i].mem + kimage->segment[i].memsz,
130 			kimage->segment[i].memsz,
131 			kimage->segment[i].memsz /  PAGE_SIZE);
132 
133 		__flush_dcache_area(phys_to_virt(kimage->segment[i].mem),
134 			kimage->segment[i].memsz);
135 	}
136 }
137 
138 /**
139  * machine_kexec - Do the kexec reboot.
140  *
141  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
142  */
143 void machine_kexec(struct kimage *kimage)
144 {
145 	phys_addr_t reboot_code_buffer_phys;
146 	void *reboot_code_buffer;
147 
148 	/*
149 	 * New cpus may have become stuck_in_kernel after we loaded the image.
150 	 */
151 	BUG_ON(cpus_are_stuck_in_kernel() || (num_online_cpus() > 1));
152 
153 	reboot_code_buffer_phys = page_to_phys(kimage->control_code_page);
154 	reboot_code_buffer = phys_to_virt(reboot_code_buffer_phys);
155 
156 	kexec_image_info(kimage);
157 
158 	pr_debug("%s:%d: control_code_page:        %p\n", __func__, __LINE__,
159 		kimage->control_code_page);
160 	pr_debug("%s:%d: reboot_code_buffer_phys:  %pa\n", __func__, __LINE__,
161 		&reboot_code_buffer_phys);
162 	pr_debug("%s:%d: reboot_code_buffer:       %p\n", __func__, __LINE__,
163 		reboot_code_buffer);
164 	pr_debug("%s:%d: relocate_new_kernel:      %p\n", __func__, __LINE__,
165 		arm64_relocate_new_kernel);
166 	pr_debug("%s:%d: relocate_new_kernel_size: 0x%lx(%lu) bytes\n",
167 		__func__, __LINE__, arm64_relocate_new_kernel_size,
168 		arm64_relocate_new_kernel_size);
169 
170 	/*
171 	 * Copy arm64_relocate_new_kernel to the reboot_code_buffer for use
172 	 * after the kernel is shut down.
173 	 */
174 	memcpy(reboot_code_buffer, arm64_relocate_new_kernel,
175 		arm64_relocate_new_kernel_size);
176 
177 	/* Flush the reboot_code_buffer in preparation for its execution. */
178 	__flush_dcache_area(reboot_code_buffer, arm64_relocate_new_kernel_size);
179 	flush_icache_range((uintptr_t)reboot_code_buffer,
180 		arm64_relocate_new_kernel_size);
181 
182 	/* Flush the kimage list and its buffers. */
183 	kexec_list_flush(kimage);
184 
185 	/* Flush the new image if already in place. */
186 	if (kimage->head & IND_DONE)
187 		kexec_segment_flush(kimage);
188 
189 	pr_info("Bye!\n");
190 
191 	/* Disable all DAIF exceptions. */
192 	asm volatile ("msr daifset, #0xf" : : : "memory");
193 
194 	/*
195 	 * cpu_soft_restart will shutdown the MMU, disable data caches, then
196 	 * transfer control to the reboot_code_buffer which contains a copy of
197 	 * the arm64_relocate_new_kernel routine.  arm64_relocate_new_kernel
198 	 * uses physical addressing to relocate the new image to its final
199 	 * position and transfers control to the image entry point when the
200 	 * relocation is complete.
201 	 */
202 
203 	cpu_soft_restart(1, reboot_code_buffer_phys, kimage->head,
204 		kimage_start, 0);
205 
206 	BUG(); /* Should never get here. */
207 }
208 
209 void machine_crash_shutdown(struct pt_regs *regs)
210 {
211 	/* Empty routine needed to avoid build errors. */
212 }
213