1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec for arm64 4 * 5 * Copyright (C) Linaro. 6 * Copyright (C) Huawei Futurewei Technologies. 7 */ 8 9 #include <linux/interrupt.h> 10 #include <linux/irq.h> 11 #include <linux/kernel.h> 12 #include <linux/kexec.h> 13 #include <linux/page-flags.h> 14 #include <linux/set_memory.h> 15 #include <linux/smp.h> 16 17 #include <asm/cacheflush.h> 18 #include <asm/cpu_ops.h> 19 #include <asm/daifflags.h> 20 #include <asm/memory.h> 21 #include <asm/mmu.h> 22 #include <asm/mmu_context.h> 23 #include <asm/page.h> 24 #include <asm/sections.h> 25 #include <asm/trans_pgd.h> 26 27 /** 28 * kexec_image_info - For debugging output. 29 */ 30 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i) 31 static void _kexec_image_info(const char *func, int line, 32 const struct kimage *kimage) 33 { 34 unsigned long i; 35 36 pr_debug("%s:%d:\n", func, line); 37 pr_debug(" kexec kimage info:\n"); 38 pr_debug(" type: %d\n", kimage->type); 39 pr_debug(" start: %lx\n", kimage->start); 40 pr_debug(" head: %lx\n", kimage->head); 41 pr_debug(" nr_segments: %lu\n", kimage->nr_segments); 42 pr_debug(" dtb_mem: %pa\n", &kimage->arch.dtb_mem); 43 pr_debug(" kern_reloc: %pa\n", &kimage->arch.kern_reloc); 44 pr_debug(" el2_vectors: %pa\n", &kimage->arch.el2_vectors); 45 46 for (i = 0; i < kimage->nr_segments; i++) { 47 pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n", 48 i, 49 kimage->segment[i].mem, 50 kimage->segment[i].mem + kimage->segment[i].memsz, 51 kimage->segment[i].memsz, 52 kimage->segment[i].memsz / PAGE_SIZE); 53 } 54 } 55 56 void machine_kexec_cleanup(struct kimage *kimage) 57 { 58 /* Empty routine needed to avoid build errors. */ 59 } 60 61 /** 62 * machine_kexec_prepare - Prepare for a kexec reboot. 63 * 64 * Called from the core kexec code when a kernel image is loaded. 65 * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus 66 * are stuck in the kernel. This avoids a panic once we hit machine_kexec(). 67 */ 68 int machine_kexec_prepare(struct kimage *kimage) 69 { 70 if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) { 71 pr_err("Can't kexec: CPUs are stuck in the kernel.\n"); 72 return -EBUSY; 73 } 74 75 return 0; 76 } 77 78 /** 79 * kexec_segment_flush - Helper to flush the kimage segments to PoC. 80 */ 81 static void kexec_segment_flush(const struct kimage *kimage) 82 { 83 unsigned long i; 84 85 pr_debug("%s:\n", __func__); 86 87 for (i = 0; i < kimage->nr_segments; i++) { 88 pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n", 89 i, 90 kimage->segment[i].mem, 91 kimage->segment[i].mem + kimage->segment[i].memsz, 92 kimage->segment[i].memsz, 93 kimage->segment[i].memsz / PAGE_SIZE); 94 95 dcache_clean_inval_poc( 96 (unsigned long)phys_to_virt(kimage->segment[i].mem), 97 (unsigned long)phys_to_virt(kimage->segment[i].mem) + 98 kimage->segment[i].memsz); 99 } 100 } 101 102 /* Allocates pages for kexec page table */ 103 static void *kexec_page_alloc(void *arg) 104 { 105 struct kimage *kimage = (struct kimage *)arg; 106 struct page *page = kimage_alloc_control_pages(kimage, 0); 107 void *vaddr = NULL; 108 109 if (!page) 110 return NULL; 111 112 vaddr = page_address(page); 113 memset(vaddr, 0, PAGE_SIZE); 114 115 return vaddr; 116 } 117 118 int machine_kexec_post_load(struct kimage *kimage) 119 { 120 int rc; 121 pgd_t *trans_pgd; 122 void *reloc_code = page_to_virt(kimage->control_code_page); 123 long reloc_size; 124 struct trans_pgd_info info = { 125 .trans_alloc_page = kexec_page_alloc, 126 .trans_alloc_arg = kimage, 127 }; 128 129 /* If in place, relocation is not used, only flush next kernel */ 130 if (kimage->head & IND_DONE) { 131 kexec_segment_flush(kimage); 132 kexec_image_info(kimage); 133 return 0; 134 } 135 136 kimage->arch.el2_vectors = 0; 137 if (is_hyp_nvhe()) { 138 rc = trans_pgd_copy_el2_vectors(&info, 139 &kimage->arch.el2_vectors); 140 if (rc) 141 return rc; 142 } 143 144 /* Create a copy of the linear map */ 145 trans_pgd = kexec_page_alloc(kimage); 146 if (!trans_pgd) 147 return -ENOMEM; 148 rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END); 149 if (rc) 150 return rc; 151 kimage->arch.ttbr1 = __pa(trans_pgd); 152 kimage->arch.zero_page = __pa_symbol(empty_zero_page); 153 154 reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start; 155 memcpy(reloc_code, __relocate_new_kernel_start, reloc_size); 156 kimage->arch.kern_reloc = __pa(reloc_code); 157 rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0, 158 &kimage->arch.t0sz, reloc_code); 159 if (rc) 160 return rc; 161 kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage; 162 163 /* Flush the reloc_code in preparation for its execution. */ 164 dcache_clean_inval_poc((unsigned long)reloc_code, 165 (unsigned long)reloc_code + reloc_size); 166 icache_inval_pou((uintptr_t)reloc_code, 167 (uintptr_t)reloc_code + reloc_size); 168 kexec_image_info(kimage); 169 170 return 0; 171 } 172 173 /** 174 * machine_kexec - Do the kexec reboot. 175 * 176 * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC. 177 */ 178 void machine_kexec(struct kimage *kimage) 179 { 180 bool in_kexec_crash = (kimage == kexec_crash_image); 181 bool stuck_cpus = cpus_are_stuck_in_kernel(); 182 183 /* 184 * New cpus may have become stuck_in_kernel after we loaded the image. 185 */ 186 BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1))); 187 WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()), 188 "Some CPUs may be stale, kdump will be unreliable.\n"); 189 190 pr_info("Bye!\n"); 191 192 local_daif_mask(); 193 194 /* 195 * Both restart and kernel_reloc will shutdown the MMU, disable data 196 * caches. However, restart will start new kernel or purgatory directly, 197 * kernel_reloc contains the body of arm64_relocate_new_kernel 198 * In kexec case, kimage->start points to purgatory assuming that 199 * kernel entry and dtb address are embedded in purgatory by 200 * userspace (kexec-tools). 201 * In kexec_file case, the kernel starts directly without purgatory. 202 */ 203 if (kimage->head & IND_DONE) { 204 typeof(cpu_soft_restart) *restart; 205 206 cpu_install_idmap(); 207 restart = (void *)__pa_symbol(function_nocfi(cpu_soft_restart)); 208 restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem, 209 0, 0); 210 } else { 211 void (*kernel_reloc)(struct kimage *kimage); 212 213 if (is_hyp_nvhe()) 214 __hyp_set_vectors(kimage->arch.el2_vectors); 215 cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz); 216 kernel_reloc = (void *)kimage->arch.kern_reloc; 217 kernel_reloc(kimage); 218 } 219 220 BUG(); /* Should never get here. */ 221 } 222 223 static void machine_kexec_mask_interrupts(void) 224 { 225 unsigned int i; 226 struct irq_desc *desc; 227 228 for_each_irq_desc(i, desc) { 229 struct irq_chip *chip; 230 int ret; 231 232 chip = irq_desc_get_chip(desc); 233 if (!chip) 234 continue; 235 236 /* 237 * First try to remove the active state. If this 238 * fails, try to EOI the interrupt. 239 */ 240 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false); 241 242 if (ret && irqd_irq_inprogress(&desc->irq_data) && 243 chip->irq_eoi) 244 chip->irq_eoi(&desc->irq_data); 245 246 if (chip->irq_mask) 247 chip->irq_mask(&desc->irq_data); 248 249 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data)) 250 chip->irq_disable(&desc->irq_data); 251 } 252 } 253 254 /** 255 * machine_crash_shutdown - shutdown non-crashing cpus and save registers 256 */ 257 void machine_crash_shutdown(struct pt_regs *regs) 258 { 259 local_irq_disable(); 260 261 /* shutdown non-crashing cpus */ 262 crash_smp_send_stop(); 263 264 /* for crashing cpu */ 265 crash_save_cpu(regs, smp_processor_id()); 266 machine_kexec_mask_interrupts(); 267 268 pr_info("Starting crashdump kernel...\n"); 269 } 270 271 void arch_kexec_protect_crashkres(void) 272 { 273 int i; 274 275 for (i = 0; i < kexec_crash_image->nr_segments; i++) 276 set_memory_valid( 277 __phys_to_virt(kexec_crash_image->segment[i].mem), 278 kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0); 279 } 280 281 void arch_kexec_unprotect_crashkres(void) 282 { 283 int i; 284 285 for (i = 0; i < kexec_crash_image->nr_segments; i++) 286 set_memory_valid( 287 __phys_to_virt(kexec_crash_image->segment[i].mem), 288 kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1); 289 } 290 291 #ifdef CONFIG_HIBERNATION 292 /* 293 * To preserve the crash dump kernel image, the relevant memory segments 294 * should be mapped again around the hibernation. 295 */ 296 void crash_prepare_suspend(void) 297 { 298 if (kexec_crash_image) 299 arch_kexec_unprotect_crashkres(); 300 } 301 302 void crash_post_resume(void) 303 { 304 if (kexec_crash_image) 305 arch_kexec_protect_crashkres(); 306 } 307 308 /* 309 * crash_is_nosave 310 * 311 * Return true only if a page is part of reserved memory for crash dump kernel, 312 * but does not hold any data of loaded kernel image. 313 * 314 * Note that all the pages in crash dump kernel memory have been initially 315 * marked as Reserved as memory was allocated via memblock_reserve(). 316 * 317 * In hibernation, the pages which are Reserved and yet "nosave" are excluded 318 * from the hibernation iamge. crash_is_nosave() does thich check for crash 319 * dump kernel and will reduce the total size of hibernation image. 320 */ 321 322 bool crash_is_nosave(unsigned long pfn) 323 { 324 int i; 325 phys_addr_t addr; 326 327 if (!crashk_res.end) 328 return false; 329 330 /* in reserved memory? */ 331 addr = __pfn_to_phys(pfn); 332 if ((addr < crashk_res.start) || (crashk_res.end < addr)) { 333 if (!crashk_low_res.end) 334 return false; 335 336 if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr)) 337 return false; 338 } 339 340 if (!kexec_crash_image) 341 return true; 342 343 /* not part of loaded kernel image? */ 344 for (i = 0; i < kexec_crash_image->nr_segments; i++) 345 if (addr >= kexec_crash_image->segment[i].mem && 346 addr < (kexec_crash_image->segment[i].mem + 347 kexec_crash_image->segment[i].memsz)) 348 return false; 349 350 return true; 351 } 352 353 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end) 354 { 355 unsigned long addr; 356 struct page *page; 357 358 for (addr = begin; addr < end; addr += PAGE_SIZE) { 359 page = phys_to_page(addr); 360 free_reserved_page(page); 361 } 362 } 363 #endif /* CONFIG_HIBERNATION */ 364