1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8 
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/smp.h>
15 
16 #include <asm/cacheflush.h>
17 #include <asm/cpu_ops.h>
18 #include <asm/daifflags.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/mmu_context.h>
22 #include <asm/page.h>
23 
24 #include "cpu-reset.h"
25 
26 /* Global variables for the arm64_relocate_new_kernel routine. */
27 extern const unsigned char arm64_relocate_new_kernel[];
28 extern const unsigned long arm64_relocate_new_kernel_size;
29 
30 /**
31  * kexec_image_info - For debugging output.
32  */
33 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
34 static void _kexec_image_info(const char *func, int line,
35 	const struct kimage *kimage)
36 {
37 	unsigned long i;
38 
39 	pr_debug("%s:%d:\n", func, line);
40 	pr_debug("  kexec kimage info:\n");
41 	pr_debug("    type:        %d\n", kimage->type);
42 	pr_debug("    start:       %lx\n", kimage->start);
43 	pr_debug("    head:        %lx\n", kimage->head);
44 	pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
45 	pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
46 
47 	for (i = 0; i < kimage->nr_segments; i++) {
48 		pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
49 			i,
50 			kimage->segment[i].mem,
51 			kimage->segment[i].mem + kimage->segment[i].memsz,
52 			kimage->segment[i].memsz,
53 			kimage->segment[i].memsz /  PAGE_SIZE);
54 	}
55 }
56 
57 void machine_kexec_cleanup(struct kimage *kimage)
58 {
59 	/* Empty routine needed to avoid build errors. */
60 }
61 
62 int machine_kexec_post_load(struct kimage *kimage)
63 {
64 	void *reloc_code = page_to_virt(kimage->control_code_page);
65 
66 	memcpy(reloc_code, arm64_relocate_new_kernel,
67 	       arm64_relocate_new_kernel_size);
68 	kimage->arch.kern_reloc = __pa(reloc_code);
69 	kexec_image_info(kimage);
70 
71 	/* Flush the reloc_code in preparation for its execution. */
72 	__flush_dcache_area(reloc_code, arm64_relocate_new_kernel_size);
73 	flush_icache_range((uintptr_t)reloc_code, (uintptr_t)reloc_code +
74 			   arm64_relocate_new_kernel_size);
75 
76 	return 0;
77 }
78 
79 /**
80  * machine_kexec_prepare - Prepare for a kexec reboot.
81  *
82  * Called from the core kexec code when a kernel image is loaded.
83  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
84  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
85  */
86 int machine_kexec_prepare(struct kimage *kimage)
87 {
88 	if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
89 		pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
90 		return -EBUSY;
91 	}
92 
93 	return 0;
94 }
95 
96 /**
97  * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
98  */
99 static void kexec_list_flush(struct kimage *kimage)
100 {
101 	kimage_entry_t *entry;
102 
103 	for (entry = &kimage->head; ; entry++) {
104 		unsigned int flag;
105 		void *addr;
106 
107 		/* flush the list entries. */
108 		__flush_dcache_area(entry, sizeof(kimage_entry_t));
109 
110 		flag = *entry & IND_FLAGS;
111 		if (flag == IND_DONE)
112 			break;
113 
114 		addr = phys_to_virt(*entry & PAGE_MASK);
115 
116 		switch (flag) {
117 		case IND_INDIRECTION:
118 			/* Set entry point just before the new list page. */
119 			entry = (kimage_entry_t *)addr - 1;
120 			break;
121 		case IND_SOURCE:
122 			/* flush the source pages. */
123 			__flush_dcache_area(addr, PAGE_SIZE);
124 			break;
125 		case IND_DESTINATION:
126 			break;
127 		default:
128 			BUG();
129 		}
130 	}
131 }
132 
133 /**
134  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
135  */
136 static void kexec_segment_flush(const struct kimage *kimage)
137 {
138 	unsigned long i;
139 
140 	pr_debug("%s:\n", __func__);
141 
142 	for (i = 0; i < kimage->nr_segments; i++) {
143 		pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
144 			i,
145 			kimage->segment[i].mem,
146 			kimage->segment[i].mem + kimage->segment[i].memsz,
147 			kimage->segment[i].memsz,
148 			kimage->segment[i].memsz /  PAGE_SIZE);
149 
150 		__flush_dcache_area(phys_to_virt(kimage->segment[i].mem),
151 			kimage->segment[i].memsz);
152 	}
153 }
154 
155 /**
156  * machine_kexec - Do the kexec reboot.
157  *
158  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
159  */
160 void machine_kexec(struct kimage *kimage)
161 {
162 	bool in_kexec_crash = (kimage == kexec_crash_image);
163 	bool stuck_cpus = cpus_are_stuck_in_kernel();
164 
165 	/*
166 	 * New cpus may have become stuck_in_kernel after we loaded the image.
167 	 */
168 	BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
169 	WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
170 		"Some CPUs may be stale, kdump will be unreliable.\n");
171 
172 	/* Flush the kimage list and its buffers. */
173 	kexec_list_flush(kimage);
174 
175 	/* Flush the new image if already in place. */
176 	if ((kimage != kexec_crash_image) && (kimage->head & IND_DONE))
177 		kexec_segment_flush(kimage);
178 
179 	pr_info("Bye!\n");
180 
181 	local_daif_mask();
182 
183 	/*
184 	 * cpu_soft_restart will shutdown the MMU, disable data caches, then
185 	 * transfer control to the kern_reloc which contains a copy of
186 	 * the arm64_relocate_new_kernel routine.  arm64_relocate_new_kernel
187 	 * uses physical addressing to relocate the new image to its final
188 	 * position and transfers control to the image entry point when the
189 	 * relocation is complete.
190 	 * In kexec case, kimage->start points to purgatory assuming that
191 	 * kernel entry and dtb address are embedded in purgatory by
192 	 * userspace (kexec-tools).
193 	 * In kexec_file case, the kernel starts directly without purgatory.
194 	 */
195 	cpu_soft_restart(kimage->arch.kern_reloc, kimage->head, kimage->start,
196 			 kimage->arch.dtb_mem);
197 
198 	BUG(); /* Should never get here. */
199 }
200 
201 static void machine_kexec_mask_interrupts(void)
202 {
203 	unsigned int i;
204 	struct irq_desc *desc;
205 
206 	for_each_irq_desc(i, desc) {
207 		struct irq_chip *chip;
208 		int ret;
209 
210 		chip = irq_desc_get_chip(desc);
211 		if (!chip)
212 			continue;
213 
214 		/*
215 		 * First try to remove the active state. If this
216 		 * fails, try to EOI the interrupt.
217 		 */
218 		ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
219 
220 		if (ret && irqd_irq_inprogress(&desc->irq_data) &&
221 		    chip->irq_eoi)
222 			chip->irq_eoi(&desc->irq_data);
223 
224 		if (chip->irq_mask)
225 			chip->irq_mask(&desc->irq_data);
226 
227 		if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
228 			chip->irq_disable(&desc->irq_data);
229 	}
230 }
231 
232 /**
233  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
234  */
235 void machine_crash_shutdown(struct pt_regs *regs)
236 {
237 	local_irq_disable();
238 
239 	/* shutdown non-crashing cpus */
240 	crash_smp_send_stop();
241 
242 	/* for crashing cpu */
243 	crash_save_cpu(regs, smp_processor_id());
244 	machine_kexec_mask_interrupts();
245 
246 	pr_info("Starting crashdump kernel...\n");
247 }
248 
249 void arch_kexec_protect_crashkres(void)
250 {
251 	int i;
252 
253 	kexec_segment_flush(kexec_crash_image);
254 
255 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
256 		set_memory_valid(
257 			__phys_to_virt(kexec_crash_image->segment[i].mem),
258 			kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
259 }
260 
261 void arch_kexec_unprotect_crashkres(void)
262 {
263 	int i;
264 
265 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
266 		set_memory_valid(
267 			__phys_to_virt(kexec_crash_image->segment[i].mem),
268 			kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
269 }
270 
271 #ifdef CONFIG_HIBERNATION
272 /*
273  * To preserve the crash dump kernel image, the relevant memory segments
274  * should be mapped again around the hibernation.
275  */
276 void crash_prepare_suspend(void)
277 {
278 	if (kexec_crash_image)
279 		arch_kexec_unprotect_crashkres();
280 }
281 
282 void crash_post_resume(void)
283 {
284 	if (kexec_crash_image)
285 		arch_kexec_protect_crashkres();
286 }
287 
288 /*
289  * crash_is_nosave
290  *
291  * Return true only if a page is part of reserved memory for crash dump kernel,
292  * but does not hold any data of loaded kernel image.
293  *
294  * Note that all the pages in crash dump kernel memory have been initially
295  * marked as Reserved as memory was allocated via memblock_reserve().
296  *
297  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
298  * from the hibernation iamge. crash_is_nosave() does thich check for crash
299  * dump kernel and will reduce the total size of hibernation image.
300  */
301 
302 bool crash_is_nosave(unsigned long pfn)
303 {
304 	int i;
305 	phys_addr_t addr;
306 
307 	if (!crashk_res.end)
308 		return false;
309 
310 	/* in reserved memory? */
311 	addr = __pfn_to_phys(pfn);
312 	if ((addr < crashk_res.start) || (crashk_res.end < addr))
313 		return false;
314 
315 	if (!kexec_crash_image)
316 		return true;
317 
318 	/* not part of loaded kernel image? */
319 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
320 		if (addr >= kexec_crash_image->segment[i].mem &&
321 				addr < (kexec_crash_image->segment[i].mem +
322 					kexec_crash_image->segment[i].memsz))
323 			return false;
324 
325 	return true;
326 }
327 
328 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
329 {
330 	unsigned long addr;
331 	struct page *page;
332 
333 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
334 		page = phys_to_page(addr);
335 		free_reserved_page(page);
336 	}
337 }
338 #endif /* CONFIG_HIBERNATION */
339