1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8 
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/set_memory.h>
15 #include <linux/smp.h>
16 
17 #include <asm/cacheflush.h>
18 #include <asm/cpu_ops.h>
19 #include <asm/daifflags.h>
20 #include <asm/memory.h>
21 #include <asm/mmu.h>
22 #include <asm/mmu_context.h>
23 #include <asm/page.h>
24 #include <asm/sections.h>
25 #include <asm/trans_pgd.h>
26 
27 /**
28  * kexec_image_info - For debugging output.
29  */
30 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
31 static void _kexec_image_info(const char *func, int line,
32 	const struct kimage *kimage)
33 {
34 	unsigned long i;
35 
36 	pr_debug("%s:%d:\n", func, line);
37 	pr_debug("  kexec kimage info:\n");
38 	pr_debug("    type:        %d\n", kimage->type);
39 	pr_debug("    start:       %lx\n", kimage->start);
40 	pr_debug("    head:        %lx\n", kimage->head);
41 	pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
42 	pr_debug("    dtb_mem: %pa\n", &kimage->arch.dtb_mem);
43 	pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
44 	pr_debug("    el2_vectors: %pa\n", &kimage->arch.el2_vectors);
45 
46 	for (i = 0; i < kimage->nr_segments; i++) {
47 		pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
48 			i,
49 			kimage->segment[i].mem,
50 			kimage->segment[i].mem + kimage->segment[i].memsz,
51 			kimage->segment[i].memsz,
52 			kimage->segment[i].memsz /  PAGE_SIZE);
53 	}
54 }
55 
56 void machine_kexec_cleanup(struct kimage *kimage)
57 {
58 	/* Empty routine needed to avoid build errors. */
59 }
60 
61 /**
62  * machine_kexec_prepare - Prepare for a kexec reboot.
63  *
64  * Called from the core kexec code when a kernel image is loaded.
65  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
66  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
67  */
68 int machine_kexec_prepare(struct kimage *kimage)
69 {
70 	if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
71 		pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
72 		return -EBUSY;
73 	}
74 
75 	return 0;
76 }
77 
78 /**
79  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
80  */
81 static void kexec_segment_flush(const struct kimage *kimage)
82 {
83 	unsigned long i;
84 
85 	pr_debug("%s:\n", __func__);
86 
87 	for (i = 0; i < kimage->nr_segments; i++) {
88 		pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
89 			i,
90 			kimage->segment[i].mem,
91 			kimage->segment[i].mem + kimage->segment[i].memsz,
92 			kimage->segment[i].memsz,
93 			kimage->segment[i].memsz /  PAGE_SIZE);
94 
95 		dcache_clean_inval_poc(
96 			(unsigned long)phys_to_virt(kimage->segment[i].mem),
97 			(unsigned long)phys_to_virt(kimage->segment[i].mem) +
98 				kimage->segment[i].memsz);
99 	}
100 }
101 
102 /* Allocates pages for kexec page table */
103 static void *kexec_page_alloc(void *arg)
104 {
105 	struct kimage *kimage = (struct kimage *)arg;
106 	struct page *page = kimage_alloc_control_pages(kimage, 0);
107 
108 	if (!page)
109 		return NULL;
110 
111 	memset(page_address(page), 0, PAGE_SIZE);
112 
113 	return page_address(page);
114 }
115 
116 int machine_kexec_post_load(struct kimage *kimage)
117 {
118 	int rc;
119 	pgd_t *trans_pgd;
120 	void *reloc_code = page_to_virt(kimage->control_code_page);
121 	long reloc_size;
122 	struct trans_pgd_info info = {
123 		.trans_alloc_page	= kexec_page_alloc,
124 		.trans_alloc_arg	= kimage,
125 	};
126 
127 	/* If in place, relocation is not used, only flush next kernel */
128 	if (kimage->head & IND_DONE) {
129 		kexec_segment_flush(kimage);
130 		kexec_image_info(kimage);
131 		return 0;
132 	}
133 
134 	kimage->arch.el2_vectors = 0;
135 	if (is_hyp_nvhe()) {
136 		rc = trans_pgd_copy_el2_vectors(&info,
137 						&kimage->arch.el2_vectors);
138 		if (rc)
139 			return rc;
140 	}
141 
142 	/* Create a copy of the linear map */
143 	trans_pgd = kexec_page_alloc(kimage);
144 	if (!trans_pgd)
145 		return -ENOMEM;
146 	rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END);
147 	if (rc)
148 		return rc;
149 	kimage->arch.ttbr1 = __pa(trans_pgd);
150 	kimage->arch.zero_page = __pa(empty_zero_page);
151 
152 	reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start;
153 	memcpy(reloc_code, __relocate_new_kernel_start, reloc_size);
154 	kimage->arch.kern_reloc = __pa(reloc_code);
155 	rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0,
156 				  &kimage->arch.t0sz, reloc_code);
157 	if (rc)
158 		return rc;
159 	kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage;
160 
161 	/* Flush the reloc_code in preparation for its execution. */
162 	dcache_clean_inval_poc((unsigned long)reloc_code,
163 			       (unsigned long)reloc_code + reloc_size);
164 	icache_inval_pou((uintptr_t)reloc_code,
165 			 (uintptr_t)reloc_code + reloc_size);
166 	kexec_image_info(kimage);
167 
168 	return 0;
169 }
170 
171 /**
172  * machine_kexec - Do the kexec reboot.
173  *
174  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
175  */
176 void machine_kexec(struct kimage *kimage)
177 {
178 	bool in_kexec_crash = (kimage == kexec_crash_image);
179 	bool stuck_cpus = cpus_are_stuck_in_kernel();
180 
181 	/*
182 	 * New cpus may have become stuck_in_kernel after we loaded the image.
183 	 */
184 	BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
185 	WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
186 		"Some CPUs may be stale, kdump will be unreliable.\n");
187 
188 	pr_info("Bye!\n");
189 
190 	local_daif_mask();
191 
192 	/*
193 	 * Both restart and kernel_reloc will shutdown the MMU, disable data
194 	 * caches. However, restart will start new kernel or purgatory directly,
195 	 * kernel_reloc contains the body of arm64_relocate_new_kernel
196 	 * In kexec case, kimage->start points to purgatory assuming that
197 	 * kernel entry and dtb address are embedded in purgatory by
198 	 * userspace (kexec-tools).
199 	 * In kexec_file case, the kernel starts directly without purgatory.
200 	 */
201 	if (kimage->head & IND_DONE) {
202 		typeof(cpu_soft_restart) *restart;
203 
204 		cpu_install_idmap();
205 		restart = (void *)__pa_symbol(function_nocfi(cpu_soft_restart));
206 		restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem,
207 			0, 0);
208 	} else {
209 		void (*kernel_reloc)(struct kimage *kimage);
210 
211 		if (is_hyp_nvhe())
212 			__hyp_set_vectors(kimage->arch.el2_vectors);
213 		cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz);
214 		kernel_reloc = (void *)kimage->arch.kern_reloc;
215 		kernel_reloc(kimage);
216 	}
217 
218 	BUG(); /* Should never get here. */
219 }
220 
221 static void machine_kexec_mask_interrupts(void)
222 {
223 	unsigned int i;
224 	struct irq_desc *desc;
225 
226 	for_each_irq_desc(i, desc) {
227 		struct irq_chip *chip;
228 		int ret;
229 
230 		chip = irq_desc_get_chip(desc);
231 		if (!chip)
232 			continue;
233 
234 		/*
235 		 * First try to remove the active state. If this
236 		 * fails, try to EOI the interrupt.
237 		 */
238 		ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
239 
240 		if (ret && irqd_irq_inprogress(&desc->irq_data) &&
241 		    chip->irq_eoi)
242 			chip->irq_eoi(&desc->irq_data);
243 
244 		if (chip->irq_mask)
245 			chip->irq_mask(&desc->irq_data);
246 
247 		if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
248 			chip->irq_disable(&desc->irq_data);
249 	}
250 }
251 
252 /**
253  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
254  */
255 void machine_crash_shutdown(struct pt_regs *regs)
256 {
257 	local_irq_disable();
258 
259 	/* shutdown non-crashing cpus */
260 	crash_smp_send_stop();
261 
262 	/* for crashing cpu */
263 	crash_save_cpu(regs, smp_processor_id());
264 	machine_kexec_mask_interrupts();
265 
266 	pr_info("Starting crashdump kernel...\n");
267 }
268 
269 void arch_kexec_protect_crashkres(void)
270 {
271 	int i;
272 
273 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
274 		set_memory_valid(
275 			__phys_to_virt(kexec_crash_image->segment[i].mem),
276 			kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
277 }
278 
279 void arch_kexec_unprotect_crashkres(void)
280 {
281 	int i;
282 
283 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
284 		set_memory_valid(
285 			__phys_to_virt(kexec_crash_image->segment[i].mem),
286 			kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
287 }
288 
289 #ifdef CONFIG_HIBERNATION
290 /*
291  * To preserve the crash dump kernel image, the relevant memory segments
292  * should be mapped again around the hibernation.
293  */
294 void crash_prepare_suspend(void)
295 {
296 	if (kexec_crash_image)
297 		arch_kexec_unprotect_crashkres();
298 }
299 
300 void crash_post_resume(void)
301 {
302 	if (kexec_crash_image)
303 		arch_kexec_protect_crashkres();
304 }
305 
306 /*
307  * crash_is_nosave
308  *
309  * Return true only if a page is part of reserved memory for crash dump kernel,
310  * but does not hold any data of loaded kernel image.
311  *
312  * Note that all the pages in crash dump kernel memory have been initially
313  * marked as Reserved as memory was allocated via memblock_reserve().
314  *
315  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
316  * from the hibernation iamge. crash_is_nosave() does thich check for crash
317  * dump kernel and will reduce the total size of hibernation image.
318  */
319 
320 bool crash_is_nosave(unsigned long pfn)
321 {
322 	int i;
323 	phys_addr_t addr;
324 
325 	if (!crashk_res.end)
326 		return false;
327 
328 	/* in reserved memory? */
329 	addr = __pfn_to_phys(pfn);
330 	if ((addr < crashk_res.start) || (crashk_res.end < addr))
331 		return false;
332 
333 	if (!kexec_crash_image)
334 		return true;
335 
336 	/* not part of loaded kernel image? */
337 	for (i = 0; i < kexec_crash_image->nr_segments; i++)
338 		if (addr >= kexec_crash_image->segment[i].mem &&
339 				addr < (kexec_crash_image->segment[i].mem +
340 					kexec_crash_image->segment[i].memsz))
341 			return false;
342 
343 	return true;
344 }
345 
346 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
347 {
348 	unsigned long addr;
349 	struct page *page;
350 
351 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
352 		page = phys_to_page(addr);
353 		free_reserved_page(page);
354 	}
355 }
356 #endif /* CONFIG_HIBERNATION */
357