xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/pgtable.h>
14 #include <linux/random.h>
15 
16 #include <asm/cacheflush.h>
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/sections.h>
22 
23 enum kaslr_status {
24 	KASLR_ENABLED,
25 	KASLR_DISABLED_CMDLINE,
26 	KASLR_DISABLED_NO_SEED,
27 	KASLR_DISABLED_FDT_REMAP,
28 };
29 
30 static enum kaslr_status __initdata kaslr_status;
31 u64 __ro_after_init module_alloc_base;
32 u16 __initdata memstart_offset_seed;
33 
34 static __init u64 get_kaslr_seed(void *fdt)
35 {
36 	int node, len;
37 	fdt64_t *prop;
38 	u64 ret;
39 
40 	node = fdt_path_offset(fdt, "/chosen");
41 	if (node < 0)
42 		return 0;
43 
44 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
45 	if (!prop || len != sizeof(u64))
46 		return 0;
47 
48 	ret = fdt64_to_cpu(*prop);
49 	*prop = 0;
50 	return ret;
51 }
52 
53 static __init const u8 *kaslr_get_cmdline(void *fdt)
54 {
55 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
56 
57 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
58 		int node;
59 		const u8 *prop;
60 
61 		node = fdt_path_offset(fdt, "/chosen");
62 		if (node < 0)
63 			goto out;
64 
65 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
66 		if (!prop)
67 			goto out;
68 		return prop;
69 	}
70 out:
71 	return default_cmdline;
72 }
73 
74 /*
75  * This routine will be executed with the kernel mapped at its default virtual
76  * address, and if it returns successfully, the kernel will be remapped, and
77  * start_kernel() will be executed from a randomized virtual offset. The
78  * relocation will result in all absolute references (e.g., static variables
79  * containing function pointers) to be reinitialized, and zero-initialized
80  * .bss variables will be reset to 0.
81  */
82 u64 __init kaslr_early_init(u64 dt_phys)
83 {
84 	void *fdt;
85 	u64 seed, offset, mask, module_range;
86 	const u8 *cmdline, *str;
87 	unsigned long raw;
88 	int size;
89 
90 	/*
91 	 * Set a reasonable default for module_alloc_base in case
92 	 * we end up running with module randomization disabled.
93 	 */
94 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
95 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
96 
97 	/*
98 	 * Try to map the FDT early. If this fails, we simply bail,
99 	 * and proceed with KASLR disabled. We will make another
100 	 * attempt at mapping the FDT in setup_machine()
101 	 */
102 	early_fixmap_init();
103 	fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
104 	if (!fdt) {
105 		kaslr_status = KASLR_DISABLED_FDT_REMAP;
106 		return 0;
107 	}
108 
109 	/*
110 	 * Retrieve (and wipe) the seed from the FDT
111 	 */
112 	seed = get_kaslr_seed(fdt);
113 
114 	/*
115 	 * Check if 'nokaslr' appears on the command line, and
116 	 * return 0 if that is the case.
117 	 */
118 	cmdline = kaslr_get_cmdline(fdt);
119 	str = strstr(cmdline, "nokaslr");
120 	if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) {
121 		kaslr_status = KASLR_DISABLED_CMDLINE;
122 		return 0;
123 	}
124 
125 	/*
126 	 * Mix in any entropy obtainable architecturally if enabled
127 	 * and supported.
128 	 */
129 
130 	if (arch_get_random_seed_long_early(&raw))
131 		seed ^= raw;
132 
133 	if (!seed) {
134 		kaslr_status = KASLR_DISABLED_NO_SEED;
135 		return 0;
136 	}
137 
138 	/*
139 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
140 	 * kernel image offset from the seed. Let's place the kernel in the
141 	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
142 	 * the lower and upper quarters to avoid colliding with other
143 	 * allocations.
144 	 * Even if we could randomize at page granularity for 16k and 64k pages,
145 	 * let's always round to 2 MB so we don't interfere with the ability to
146 	 * map using contiguous PTEs
147 	 */
148 	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
149 	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
150 
151 	/* use the top 16 bits to randomize the linear region */
152 	memstart_offset_seed = seed >> 48;
153 
154 	if (IS_ENABLED(CONFIG_KASAN))
155 		/*
156 		 * KASAN does not expect the module region to intersect the
157 		 * vmalloc region, since shadow memory is allocated for each
158 		 * module at load time, whereas the vmalloc region is shadowed
159 		 * by KASAN zero pages. So keep modules out of the vmalloc
160 		 * region if KASAN is enabled, and put the kernel well within
161 		 * 4 GB of the module region.
162 		 */
163 		return offset % SZ_2G;
164 
165 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
166 		/*
167 		 * Randomize the module region over a 2 GB window covering the
168 		 * kernel. This reduces the risk of modules leaking information
169 		 * about the address of the kernel itself, but results in
170 		 * branches between modules and the core kernel that are
171 		 * resolved via PLTs. (Branches between modules will be
172 		 * resolved normally.)
173 		 */
174 		module_range = SZ_2G - (u64)(_end - _stext);
175 		module_alloc_base = max((u64)_end + offset - SZ_2G,
176 					(u64)MODULES_VADDR);
177 	} else {
178 		/*
179 		 * Randomize the module region by setting module_alloc_base to
180 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
181 		 * _stext) . This guarantees that the resulting region still
182 		 * covers [_stext, _etext], and that all relative branches can
183 		 * be resolved without veneers.
184 		 */
185 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
186 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
187 	}
188 
189 	/* use the lower 21 bits to randomize the base of the module region */
190 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
191 	module_alloc_base &= PAGE_MASK;
192 
193 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
194 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
195 
196 	return offset;
197 }
198 
199 static int __init kaslr_init(void)
200 {
201 	switch (kaslr_status) {
202 	case KASLR_ENABLED:
203 		pr_info("KASLR enabled\n");
204 		break;
205 	case KASLR_DISABLED_CMDLINE:
206 		pr_info("KASLR disabled on command line\n");
207 		break;
208 	case KASLR_DISABLED_NO_SEED:
209 		pr_warn("KASLR disabled due to lack of seed\n");
210 		break;
211 	case KASLR_DISABLED_FDT_REMAP:
212 		pr_warn("KASLR disabled due to FDT remapping failure\n");
213 		break;
214 	}
215 
216 	return 0;
217 }
218 core_initcall(kaslr_init)
219