xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/pgtable.h>
14 
15 #include <asm/archrandom.h>
16 #include <asm/cacheflush.h>
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/sections.h>
22 
23 enum kaslr_status {
24 	KASLR_ENABLED,
25 	KASLR_DISABLED_CMDLINE,
26 	KASLR_DISABLED_NO_SEED,
27 	KASLR_DISABLED_FDT_REMAP,
28 };
29 
30 static enum kaslr_status __initdata kaslr_status;
31 u64 __ro_after_init module_alloc_base;
32 u16 __initdata memstart_offset_seed;
33 
34 static __init u64 get_kaslr_seed(void *fdt)
35 {
36 	int node, len;
37 	fdt64_t *prop;
38 	u64 ret;
39 
40 	node = fdt_path_offset(fdt, "/chosen");
41 	if (node < 0)
42 		return 0;
43 
44 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
45 	if (!prop || len != sizeof(u64))
46 		return 0;
47 
48 	ret = fdt64_to_cpu(*prop);
49 	*prop = 0;
50 	return ret;
51 }
52 
53 static __init const u8 *kaslr_get_cmdline(void *fdt)
54 {
55 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
56 
57 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
58 		int node;
59 		const u8 *prop;
60 
61 		node = fdt_path_offset(fdt, "/chosen");
62 		if (node < 0)
63 			goto out;
64 
65 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
66 		if (!prop)
67 			goto out;
68 		return prop;
69 	}
70 out:
71 	return default_cmdline;
72 }
73 
74 /*
75  * This routine will be executed with the kernel mapped at its default virtual
76  * address, and if it returns successfully, the kernel will be remapped, and
77  * start_kernel() will be executed from a randomized virtual offset. The
78  * relocation will result in all absolute references (e.g., static variables
79  * containing function pointers) to be reinitialized, and zero-initialized
80  * .bss variables will be reset to 0.
81  */
82 u64 __init kaslr_early_init(u64 dt_phys)
83 {
84 	void *fdt;
85 	u64 seed, offset, mask, module_range;
86 	const u8 *cmdline, *str;
87 	int size;
88 
89 	/*
90 	 * Set a reasonable default for module_alloc_base in case
91 	 * we end up running with module randomization disabled.
92 	 */
93 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
94 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
95 
96 	/*
97 	 * Try to map the FDT early. If this fails, we simply bail,
98 	 * and proceed with KASLR disabled. We will make another
99 	 * attempt at mapping the FDT in setup_machine()
100 	 */
101 	early_fixmap_init();
102 	fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
103 	if (!fdt) {
104 		kaslr_status = KASLR_DISABLED_FDT_REMAP;
105 		return 0;
106 	}
107 
108 	/*
109 	 * Retrieve (and wipe) the seed from the FDT
110 	 */
111 	seed = get_kaslr_seed(fdt);
112 
113 	/*
114 	 * Check if 'nokaslr' appears on the command line, and
115 	 * return 0 if that is the case.
116 	 */
117 	cmdline = kaslr_get_cmdline(fdt);
118 	str = strstr(cmdline, "nokaslr");
119 	if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) {
120 		kaslr_status = KASLR_DISABLED_CMDLINE;
121 		return 0;
122 	}
123 
124 	/*
125 	 * Mix in any entropy obtainable architecturally, open coded
126 	 * since this runs extremely early.
127 	 */
128 	if (__early_cpu_has_rndr()) {
129 		unsigned long raw;
130 
131 		if (__arm64_rndr(&raw))
132 			seed ^= raw;
133 	}
134 
135 	if (!seed) {
136 		kaslr_status = KASLR_DISABLED_NO_SEED;
137 		return 0;
138 	}
139 
140 	/*
141 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
142 	 * kernel image offset from the seed. Let's place the kernel in the
143 	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
144 	 * the lower and upper quarters to avoid colliding with other
145 	 * allocations.
146 	 * Even if we could randomize at page granularity for 16k and 64k pages,
147 	 * let's always round to 2 MB so we don't interfere with the ability to
148 	 * map using contiguous PTEs
149 	 */
150 	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
151 	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
152 
153 	/* use the top 16 bits to randomize the linear region */
154 	memstart_offset_seed = seed >> 48;
155 
156 	if (IS_ENABLED(CONFIG_KASAN))
157 		/*
158 		 * KASAN does not expect the module region to intersect the
159 		 * vmalloc region, since shadow memory is allocated for each
160 		 * module at load time, whereas the vmalloc region is shadowed
161 		 * by KASAN zero pages. So keep modules out of the vmalloc
162 		 * region if KASAN is enabled, and put the kernel well within
163 		 * 4 GB of the module region.
164 		 */
165 		return offset % SZ_2G;
166 
167 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
168 		/*
169 		 * Randomize the module region over a 2 GB window covering the
170 		 * kernel. This reduces the risk of modules leaking information
171 		 * about the address of the kernel itself, but results in
172 		 * branches between modules and the core kernel that are
173 		 * resolved via PLTs. (Branches between modules will be
174 		 * resolved normally.)
175 		 */
176 		module_range = SZ_2G - (u64)(_end - _stext);
177 		module_alloc_base = max((u64)_end + offset - SZ_2G,
178 					(u64)MODULES_VADDR);
179 	} else {
180 		/*
181 		 * Randomize the module region by setting module_alloc_base to
182 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
183 		 * _stext) . This guarantees that the resulting region still
184 		 * covers [_stext, _etext], and that all relative branches can
185 		 * be resolved without veneers.
186 		 */
187 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
188 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
189 	}
190 
191 	/* use the lower 21 bits to randomize the base of the module region */
192 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
193 	module_alloc_base &= PAGE_MASK;
194 
195 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
196 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
197 
198 	return offset;
199 }
200 
201 static int __init kaslr_init(void)
202 {
203 	switch (kaslr_status) {
204 	case KASLR_ENABLED:
205 		pr_info("KASLR enabled\n");
206 		break;
207 	case KASLR_DISABLED_CMDLINE:
208 		pr_info("KASLR disabled on command line\n");
209 		break;
210 	case KASLR_DISABLED_NO_SEED:
211 		pr_warn("KASLR disabled due to lack of seed\n");
212 		break;
213 	case KASLR_DISABLED_FDT_REMAP:
214 		pr_warn("KASLR disabled due to FDT remapping failure\n");
215 		break;
216 	}
217 
218 	return 0;
219 }
220 core_initcall(kaslr_init)
221