xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 
14 #include <asm/cacheflush.h>
15 #include <asm/fixmap.h>
16 #include <asm/kernel-pgtable.h>
17 #include <asm/memory.h>
18 #include <asm/mmu.h>
19 #include <asm/pgtable.h>
20 #include <asm/sections.h>
21 
22 enum kaslr_status {
23 	KASLR_ENABLED,
24 	KASLR_DISABLED_CMDLINE,
25 	KASLR_DISABLED_NO_SEED,
26 	KASLR_DISABLED_FDT_REMAP,
27 };
28 
29 static enum kaslr_status __initdata kaslr_status;
30 u64 __ro_after_init module_alloc_base;
31 u16 __initdata memstart_offset_seed;
32 
33 static __init u64 get_kaslr_seed(void *fdt)
34 {
35 	int node, len;
36 	fdt64_t *prop;
37 	u64 ret;
38 
39 	node = fdt_path_offset(fdt, "/chosen");
40 	if (node < 0)
41 		return 0;
42 
43 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
44 	if (!prop || len != sizeof(u64))
45 		return 0;
46 
47 	ret = fdt64_to_cpu(*prop);
48 	*prop = 0;
49 	return ret;
50 }
51 
52 static __init const u8 *kaslr_get_cmdline(void *fdt)
53 {
54 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
55 
56 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
57 		int node;
58 		const u8 *prop;
59 
60 		node = fdt_path_offset(fdt, "/chosen");
61 		if (node < 0)
62 			goto out;
63 
64 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
65 		if (!prop)
66 			goto out;
67 		return prop;
68 	}
69 out:
70 	return default_cmdline;
71 }
72 
73 /*
74  * This routine will be executed with the kernel mapped at its default virtual
75  * address, and if it returns successfully, the kernel will be remapped, and
76  * start_kernel() will be executed from a randomized virtual offset. The
77  * relocation will result in all absolute references (e.g., static variables
78  * containing function pointers) to be reinitialized, and zero-initialized
79  * .bss variables will be reset to 0.
80  */
81 u64 __init kaslr_early_init(u64 dt_phys)
82 {
83 	void *fdt;
84 	u64 seed, offset, mask, module_range;
85 	const u8 *cmdline, *str;
86 	int size;
87 
88 	/*
89 	 * Set a reasonable default for module_alloc_base in case
90 	 * we end up running with module randomization disabled.
91 	 */
92 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
93 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
94 
95 	/*
96 	 * Try to map the FDT early. If this fails, we simply bail,
97 	 * and proceed with KASLR disabled. We will make another
98 	 * attempt at mapping the FDT in setup_machine()
99 	 */
100 	early_fixmap_init();
101 	fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
102 	if (!fdt) {
103 		kaslr_status = KASLR_DISABLED_FDT_REMAP;
104 		return 0;
105 	}
106 
107 	/*
108 	 * Retrieve (and wipe) the seed from the FDT
109 	 */
110 	seed = get_kaslr_seed(fdt);
111 
112 	/*
113 	 * Check if 'nokaslr' appears on the command line, and
114 	 * return 0 if that is the case.
115 	 */
116 	cmdline = kaslr_get_cmdline(fdt);
117 	str = strstr(cmdline, "nokaslr");
118 	if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) {
119 		kaslr_status = KASLR_DISABLED_CMDLINE;
120 		return 0;
121 	}
122 
123 	/*
124 	 * Mix in any entropy obtainable architecturally, open coded
125 	 * since this runs extremely early.
126 	 */
127 	if (__early_cpu_has_rndr()) {
128 		unsigned long raw;
129 
130 		if (__arm64_rndr(&raw))
131 			seed ^= raw;
132 	}
133 
134 	if (!seed) {
135 		kaslr_status = KASLR_DISABLED_NO_SEED;
136 		return 0;
137 	}
138 
139 	/*
140 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
141 	 * kernel image offset from the seed. Let's place the kernel in the
142 	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
143 	 * the lower and upper quarters to avoid colliding with other
144 	 * allocations.
145 	 * Even if we could randomize at page granularity for 16k and 64k pages,
146 	 * let's always round to 2 MB so we don't interfere with the ability to
147 	 * map using contiguous PTEs
148 	 */
149 	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
150 	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
151 
152 	/* use the top 16 bits to randomize the linear region */
153 	memstart_offset_seed = seed >> 48;
154 
155 	if (IS_ENABLED(CONFIG_KASAN))
156 		/*
157 		 * KASAN does not expect the module region to intersect the
158 		 * vmalloc region, since shadow memory is allocated for each
159 		 * module at load time, whereas the vmalloc region is shadowed
160 		 * by KASAN zero pages. So keep modules out of the vmalloc
161 		 * region if KASAN is enabled, and put the kernel well within
162 		 * 4 GB of the module region.
163 		 */
164 		return offset % SZ_2G;
165 
166 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
167 		/*
168 		 * Randomize the module region over a 2 GB window covering the
169 		 * kernel. This reduces the risk of modules leaking information
170 		 * about the address of the kernel itself, but results in
171 		 * branches between modules and the core kernel that are
172 		 * resolved via PLTs. (Branches between modules will be
173 		 * resolved normally.)
174 		 */
175 		module_range = SZ_2G - (u64)(_end - _stext);
176 		module_alloc_base = max((u64)_end + offset - SZ_2G,
177 					(u64)MODULES_VADDR);
178 	} else {
179 		/*
180 		 * Randomize the module region by setting module_alloc_base to
181 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
182 		 * _stext) . This guarantees that the resulting region still
183 		 * covers [_stext, _etext], and that all relative branches can
184 		 * be resolved without veneers.
185 		 */
186 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
187 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
188 	}
189 
190 	/* use the lower 21 bits to randomize the base of the module region */
191 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
192 	module_alloc_base &= PAGE_MASK;
193 
194 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
195 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
196 
197 	return offset;
198 }
199 
200 static int __init kaslr_init(void)
201 {
202 	switch (kaslr_status) {
203 	case KASLR_ENABLED:
204 		pr_info("KASLR enabled\n");
205 		break;
206 	case KASLR_DISABLED_CMDLINE:
207 		pr_info("KASLR disabled on command line\n");
208 		break;
209 	case KASLR_DISABLED_NO_SEED:
210 		pr_warn("KASLR disabled due to lack of seed\n");
211 		break;
212 	case KASLR_DISABLED_FDT_REMAP:
213 		pr_warn("KASLR disabled due to FDT remapping failure\n");
214 		break;
215 	}
216 
217 	return 0;
218 }
219 core_initcall(kaslr_init)
220