xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 
14 #include <asm/cacheflush.h>
15 #include <asm/fixmap.h>
16 #include <asm/kernel-pgtable.h>
17 #include <asm/memory.h>
18 #include <asm/mmu.h>
19 #include <asm/pgtable.h>
20 #include <asm/sections.h>
21 
22 u64 __ro_after_init module_alloc_base;
23 u16 __initdata memstart_offset_seed;
24 
25 static __init u64 get_kaslr_seed(void *fdt)
26 {
27 	int node, len;
28 	fdt64_t *prop;
29 	u64 ret;
30 
31 	node = fdt_path_offset(fdt, "/chosen");
32 	if (node < 0)
33 		return 0;
34 
35 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
36 	if (!prop || len != sizeof(u64))
37 		return 0;
38 
39 	ret = fdt64_to_cpu(*prop);
40 	*prop = 0;
41 	return ret;
42 }
43 
44 static __init const u8 *kaslr_get_cmdline(void *fdt)
45 {
46 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
47 
48 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
49 		int node;
50 		const u8 *prop;
51 
52 		node = fdt_path_offset(fdt, "/chosen");
53 		if (node < 0)
54 			goto out;
55 
56 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
57 		if (!prop)
58 			goto out;
59 		return prop;
60 	}
61 out:
62 	return default_cmdline;
63 }
64 
65 extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
66 				       pgprot_t prot);
67 
68 /*
69  * This routine will be executed with the kernel mapped at its default virtual
70  * address, and if it returns successfully, the kernel will be remapped, and
71  * start_kernel() will be executed from a randomized virtual offset. The
72  * relocation will result in all absolute references (e.g., static variables
73  * containing function pointers) to be reinitialized, and zero-initialized
74  * .bss variables will be reset to 0.
75  */
76 u64 __init kaslr_early_init(u64 dt_phys)
77 {
78 	void *fdt;
79 	u64 seed, offset, mask, module_range;
80 	const u8 *cmdline, *str;
81 	int size;
82 
83 	/*
84 	 * Set a reasonable default for module_alloc_base in case
85 	 * we end up running with module randomization disabled.
86 	 */
87 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
88 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
89 
90 	/*
91 	 * Try to map the FDT early. If this fails, we simply bail,
92 	 * and proceed with KASLR disabled. We will make another
93 	 * attempt at mapping the FDT in setup_machine()
94 	 */
95 	early_fixmap_init();
96 	fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
97 	if (!fdt)
98 		return 0;
99 
100 	/*
101 	 * Retrieve (and wipe) the seed from the FDT
102 	 */
103 	seed = get_kaslr_seed(fdt);
104 	if (!seed)
105 		return 0;
106 
107 	/*
108 	 * Check if 'nokaslr' appears on the command line, and
109 	 * return 0 if that is the case.
110 	 */
111 	cmdline = kaslr_get_cmdline(fdt);
112 	str = strstr(cmdline, "nokaslr");
113 	if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
114 		return 0;
115 
116 	/*
117 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
118 	 * kernel image offset from the seed. Let's place the kernel in the
119 	 * middle half of the VMALLOC area (VA_BITS - 2), and stay clear of
120 	 * the lower and upper quarters to avoid colliding with other
121 	 * allocations.
122 	 * Even if we could randomize at page granularity for 16k and 64k pages,
123 	 * let's always round to 2 MB so we don't interfere with the ability to
124 	 * map using contiguous PTEs
125 	 */
126 	mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
127 	offset = BIT(VA_BITS - 3) + (seed & mask);
128 
129 	/* use the top 16 bits to randomize the linear region */
130 	memstart_offset_seed = seed >> 48;
131 
132 	if (IS_ENABLED(CONFIG_KASAN))
133 		/*
134 		 * KASAN does not expect the module region to intersect the
135 		 * vmalloc region, since shadow memory is allocated for each
136 		 * module at load time, whereas the vmalloc region is shadowed
137 		 * by KASAN zero pages. So keep modules out of the vmalloc
138 		 * region if KASAN is enabled, and put the kernel well within
139 		 * 4 GB of the module region.
140 		 */
141 		return offset % SZ_2G;
142 
143 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
144 		/*
145 		 * Randomize the module region over a 2 GB window covering the
146 		 * kernel. This reduces the risk of modules leaking information
147 		 * about the address of the kernel itself, but results in
148 		 * branches between modules and the core kernel that are
149 		 * resolved via PLTs. (Branches between modules will be
150 		 * resolved normally.)
151 		 */
152 		module_range = SZ_2G - (u64)(_end - _stext);
153 		module_alloc_base = max((u64)_end + offset - SZ_2G,
154 					(u64)MODULES_VADDR);
155 	} else {
156 		/*
157 		 * Randomize the module region by setting module_alloc_base to
158 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
159 		 * _stext) . This guarantees that the resulting region still
160 		 * covers [_stext, _etext], and that all relative branches can
161 		 * be resolved without veneers.
162 		 */
163 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
164 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
165 	}
166 
167 	/* use the lower 21 bits to randomize the base of the module region */
168 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
169 	module_alloc_base &= PAGE_MASK;
170 
171 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
172 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
173 
174 	return offset;
175 }
176