xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/crc32.h>
10 #include <linux/init.h>
11 #include <linux/libfdt.h>
12 #include <linux/mm_types.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 
16 #include <asm/fixmap.h>
17 #include <asm/kernel-pgtable.h>
18 #include <asm/memory.h>
19 #include <asm/mmu.h>
20 #include <asm/pgtable.h>
21 #include <asm/sections.h>
22 
23 u64 __read_mostly module_alloc_base;
24 u16 __initdata memstart_offset_seed;
25 
26 static __init u64 get_kaslr_seed(void *fdt)
27 {
28 	int node, len;
29 	u64 *prop;
30 	u64 ret;
31 
32 	node = fdt_path_offset(fdt, "/chosen");
33 	if (node < 0)
34 		return 0;
35 
36 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
37 	if (!prop || len != sizeof(u64))
38 		return 0;
39 
40 	ret = fdt64_to_cpu(*prop);
41 	*prop = 0;
42 	return ret;
43 }
44 
45 static __init const u8 *get_cmdline(void *fdt)
46 {
47 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
48 
49 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
50 		int node;
51 		const u8 *prop;
52 
53 		node = fdt_path_offset(fdt, "/chosen");
54 		if (node < 0)
55 			goto out;
56 
57 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
58 		if (!prop)
59 			goto out;
60 		return prop;
61 	}
62 out:
63 	return default_cmdline;
64 }
65 
66 extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
67 				       pgprot_t prot);
68 
69 /*
70  * This routine will be executed with the kernel mapped at its default virtual
71  * address, and if it returns successfully, the kernel will be remapped, and
72  * start_kernel() will be executed from a randomized virtual offset. The
73  * relocation will result in all absolute references (e.g., static variables
74  * containing function pointers) to be reinitialized, and zero-initialized
75  * .bss variables will be reset to 0.
76  */
77 u64 __init kaslr_early_init(u64 dt_phys, u64 modulo_offset)
78 {
79 	void *fdt;
80 	u64 seed, offset, mask, module_range;
81 	const u8 *cmdline, *str;
82 	int size;
83 
84 	/*
85 	 * Set a reasonable default for module_alloc_base in case
86 	 * we end up running with module randomization disabled.
87 	 */
88 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
89 
90 	/*
91 	 * Try to map the FDT early. If this fails, we simply bail,
92 	 * and proceed with KASLR disabled. We will make another
93 	 * attempt at mapping the FDT in setup_machine()
94 	 */
95 	early_fixmap_init();
96 	fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
97 	if (!fdt)
98 		return 0;
99 
100 	/*
101 	 * Retrieve (and wipe) the seed from the FDT
102 	 */
103 	seed = get_kaslr_seed(fdt);
104 	if (!seed)
105 		return 0;
106 
107 	/*
108 	 * Check if 'nokaslr' appears on the command line, and
109 	 * return 0 if that is the case.
110 	 */
111 	cmdline = get_cmdline(fdt);
112 	str = strstr(cmdline, "nokaslr");
113 	if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
114 		return 0;
115 
116 	/*
117 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
118 	 * kernel image offset from the seed. Let's place the kernel in the
119 	 * lower half of the VMALLOC area (VA_BITS - 2).
120 	 * Even if we could randomize at page granularity for 16k and 64k pages,
121 	 * let's always round to 2 MB so we don't interfere with the ability to
122 	 * map using contiguous PTEs
123 	 */
124 	mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
125 	offset = seed & mask;
126 
127 	/* use the top 16 bits to randomize the linear region */
128 	memstart_offset_seed = seed >> 48;
129 
130 	/*
131 	 * The kernel Image should not extend across a 1GB/32MB/512MB alignment
132 	 * boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
133 	 * happens, increase the KASLR offset by the size of the kernel image.
134 	 */
135 	if ((((u64)_text + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT) !=
136 	    (((u64)_end + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT))
137 		offset = (offset + (u64)(_end - _text)) & mask;
138 
139 	if (IS_ENABLED(CONFIG_KASAN))
140 		/*
141 		 * KASAN does not expect the module region to intersect the
142 		 * vmalloc region, since shadow memory is allocated for each
143 		 * module at load time, whereas the vmalloc region is shadowed
144 		 * by KASAN zero pages. So keep modules out of the vmalloc
145 		 * region if KASAN is enabled.
146 		 */
147 		return offset;
148 
149 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
150 		/*
151 		 * Randomize the module region independently from the core
152 		 * kernel. This prevents modules from leaking any information
153 		 * about the address of the kernel itself, but results in
154 		 * branches between modules and the core kernel that are
155 		 * resolved via PLTs. (Branches between modules will be
156 		 * resolved normally.)
157 		 */
158 		module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
159 		module_alloc_base = VMALLOC_START;
160 	} else {
161 		/*
162 		 * Randomize the module region by setting module_alloc_base to
163 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
164 		 * _stext) . This guarantees that the resulting region still
165 		 * covers [_stext, _etext], and that all relative branches can
166 		 * be resolved without veneers.
167 		 */
168 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
169 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
170 	}
171 
172 	/* use the lower 21 bits to randomize the base of the module region */
173 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
174 	module_alloc_base &= PAGE_MASK;
175 
176 	return offset;
177 }
178