xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/crc32.h>
11 #include <linux/init.h>
12 #include <linux/libfdt.h>
13 #include <linux/mm_types.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/pgtable.h>
22 #include <asm/sections.h>
23 
24 u64 __ro_after_init module_alloc_base;
25 u16 __initdata memstart_offset_seed;
26 
27 static __init u64 get_kaslr_seed(void *fdt)
28 {
29 	int node, len;
30 	fdt64_t *prop;
31 	u64 ret;
32 
33 	node = fdt_path_offset(fdt, "/chosen");
34 	if (node < 0)
35 		return 0;
36 
37 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
38 	if (!prop || len != sizeof(u64))
39 		return 0;
40 
41 	ret = fdt64_to_cpu(*prop);
42 	*prop = 0;
43 	return ret;
44 }
45 
46 static __init const u8 *get_cmdline(void *fdt)
47 {
48 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
49 
50 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
51 		int node;
52 		const u8 *prop;
53 
54 		node = fdt_path_offset(fdt, "/chosen");
55 		if (node < 0)
56 			goto out;
57 
58 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
59 		if (!prop)
60 			goto out;
61 		return prop;
62 	}
63 out:
64 	return default_cmdline;
65 }
66 
67 extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
68 				       pgprot_t prot);
69 
70 /*
71  * This routine will be executed with the kernel mapped at its default virtual
72  * address, and if it returns successfully, the kernel will be remapped, and
73  * start_kernel() will be executed from a randomized virtual offset. The
74  * relocation will result in all absolute references (e.g., static variables
75  * containing function pointers) to be reinitialized, and zero-initialized
76  * .bss variables will be reset to 0.
77  */
78 u64 __init kaslr_early_init(u64 dt_phys)
79 {
80 	void *fdt;
81 	u64 seed, offset, mask, module_range;
82 	const u8 *cmdline, *str;
83 	int size;
84 
85 	/*
86 	 * Set a reasonable default for module_alloc_base in case
87 	 * we end up running with module randomization disabled.
88 	 */
89 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
90 
91 	/*
92 	 * Try to map the FDT early. If this fails, we simply bail,
93 	 * and proceed with KASLR disabled. We will make another
94 	 * attempt at mapping the FDT in setup_machine()
95 	 */
96 	early_fixmap_init();
97 	fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
98 	if (!fdt)
99 		return 0;
100 
101 	/*
102 	 * Retrieve (and wipe) the seed from the FDT
103 	 */
104 	seed = get_kaslr_seed(fdt);
105 	if (!seed)
106 		return 0;
107 
108 	/*
109 	 * Check if 'nokaslr' appears on the command line, and
110 	 * return 0 if that is the case.
111 	 */
112 	cmdline = get_cmdline(fdt);
113 	str = strstr(cmdline, "nokaslr");
114 	if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
115 		return 0;
116 
117 	/*
118 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
119 	 * kernel image offset from the seed. Let's place the kernel in the
120 	 * lower half of the VMALLOC area (VA_BITS - 2).
121 	 * Even if we could randomize at page granularity for 16k and 64k pages,
122 	 * let's always round to 2 MB so we don't interfere with the ability to
123 	 * map using contiguous PTEs
124 	 */
125 	mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
126 	offset = seed & mask;
127 
128 	/* use the top 16 bits to randomize the linear region */
129 	memstart_offset_seed = seed >> 48;
130 
131 	/*
132 	 * The kernel Image should not extend across a 1GB/32MB/512MB alignment
133 	 * boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
134 	 * happens, round down the KASLR offset by (1 << SWAPPER_TABLE_SHIFT).
135 	 *
136 	 * NOTE: The references to _text and _end below will already take the
137 	 *       modulo offset (the physical displacement modulo 2 MB) into
138 	 *       account, given that the physical placement is controlled by
139 	 *       the loader, and will not change as a result of the virtual
140 	 *       mapping we choose.
141 	 */
142 	if ((((u64)_text + offset) >> SWAPPER_TABLE_SHIFT) !=
143 	    (((u64)_end + offset) >> SWAPPER_TABLE_SHIFT))
144 		offset = round_down(offset, 1 << SWAPPER_TABLE_SHIFT);
145 
146 	if (IS_ENABLED(CONFIG_KASAN))
147 		/*
148 		 * KASAN does not expect the module region to intersect the
149 		 * vmalloc region, since shadow memory is allocated for each
150 		 * module at load time, whereas the vmalloc region is shadowed
151 		 * by KASAN zero pages. So keep modules out of the vmalloc
152 		 * region if KASAN is enabled.
153 		 */
154 		return offset;
155 
156 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
157 		/*
158 		 * Randomize the module region independently from the core
159 		 * kernel. This prevents modules from leaking any information
160 		 * about the address of the kernel itself, but results in
161 		 * branches between modules and the core kernel that are
162 		 * resolved via PLTs. (Branches between modules will be
163 		 * resolved normally.)
164 		 */
165 		module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
166 		module_alloc_base = VMALLOC_START;
167 	} else {
168 		/*
169 		 * Randomize the module region by setting module_alloc_base to
170 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
171 		 * _stext) . This guarantees that the resulting region still
172 		 * covers [_stext, _etext], and that all relative branches can
173 		 * be resolved without veneers.
174 		 */
175 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
176 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
177 	}
178 
179 	/* use the lower 21 bits to randomize the base of the module region */
180 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
181 	module_alloc_base &= PAGE_MASK;
182 
183 	return offset;
184 }
185