xref: /openbmc/linux/arch/arm64/kernel/kaslr.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/crc32.h>
11 #include <linux/init.h>
12 #include <linux/libfdt.h>
13 #include <linux/mm_types.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 
17 #include <asm/cacheflush.h>
18 #include <asm/fixmap.h>
19 #include <asm/kernel-pgtable.h>
20 #include <asm/memory.h>
21 #include <asm/mmu.h>
22 #include <asm/pgtable.h>
23 #include <asm/sections.h>
24 
25 u64 __ro_after_init module_alloc_base;
26 u16 __initdata memstart_offset_seed;
27 
28 static __init u64 get_kaslr_seed(void *fdt)
29 {
30 	int node, len;
31 	fdt64_t *prop;
32 	u64 ret;
33 
34 	node = fdt_path_offset(fdt, "/chosen");
35 	if (node < 0)
36 		return 0;
37 
38 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
39 	if (!prop || len != sizeof(u64))
40 		return 0;
41 
42 	ret = fdt64_to_cpu(*prop);
43 	*prop = 0;
44 	return ret;
45 }
46 
47 static __init const u8 *kaslr_get_cmdline(void *fdt)
48 {
49 	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
50 
51 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
52 		int node;
53 		const u8 *prop;
54 
55 		node = fdt_path_offset(fdt, "/chosen");
56 		if (node < 0)
57 			goto out;
58 
59 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
60 		if (!prop)
61 			goto out;
62 		return prop;
63 	}
64 out:
65 	return default_cmdline;
66 }
67 
68 extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
69 				       pgprot_t prot);
70 
71 /*
72  * This routine will be executed with the kernel mapped at its default virtual
73  * address, and if it returns successfully, the kernel will be remapped, and
74  * start_kernel() will be executed from a randomized virtual offset. The
75  * relocation will result in all absolute references (e.g., static variables
76  * containing function pointers) to be reinitialized, and zero-initialized
77  * .bss variables will be reset to 0.
78  */
79 u64 __init kaslr_early_init(u64 dt_phys)
80 {
81 	void *fdt;
82 	u64 seed, offset, mask, module_range;
83 	const u8 *cmdline, *str;
84 	int size;
85 
86 	/*
87 	 * Set a reasonable default for module_alloc_base in case
88 	 * we end up running with module randomization disabled.
89 	 */
90 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
91 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
92 
93 	/*
94 	 * Try to map the FDT early. If this fails, we simply bail,
95 	 * and proceed with KASLR disabled. We will make another
96 	 * attempt at mapping the FDT in setup_machine()
97 	 */
98 	early_fixmap_init();
99 	fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
100 	if (!fdt)
101 		return 0;
102 
103 	/*
104 	 * Retrieve (and wipe) the seed from the FDT
105 	 */
106 	seed = get_kaslr_seed(fdt);
107 	if (!seed)
108 		return 0;
109 
110 	/*
111 	 * Check if 'nokaslr' appears on the command line, and
112 	 * return 0 if that is the case.
113 	 */
114 	cmdline = kaslr_get_cmdline(fdt);
115 	str = strstr(cmdline, "nokaslr");
116 	if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
117 		return 0;
118 
119 	/*
120 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
121 	 * kernel image offset from the seed. Let's place the kernel in the
122 	 * middle half of the VMALLOC area (VA_BITS - 2), and stay clear of
123 	 * the lower and upper quarters to avoid colliding with other
124 	 * allocations.
125 	 * Even if we could randomize at page granularity for 16k and 64k pages,
126 	 * let's always round to 2 MB so we don't interfere with the ability to
127 	 * map using contiguous PTEs
128 	 */
129 	mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
130 	offset = BIT(VA_BITS - 3) + (seed & mask);
131 
132 	/* use the top 16 bits to randomize the linear region */
133 	memstart_offset_seed = seed >> 48;
134 
135 	if (IS_ENABLED(CONFIG_KASAN))
136 		/*
137 		 * KASAN does not expect the module region to intersect the
138 		 * vmalloc region, since shadow memory is allocated for each
139 		 * module at load time, whereas the vmalloc region is shadowed
140 		 * by KASAN zero pages. So keep modules out of the vmalloc
141 		 * region if KASAN is enabled, and put the kernel well within
142 		 * 4 GB of the module region.
143 		 */
144 		return offset % SZ_2G;
145 
146 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
147 		/*
148 		 * Randomize the module region over a 4 GB window covering the
149 		 * kernel. This reduces the risk of modules leaking information
150 		 * about the address of the kernel itself, but results in
151 		 * branches between modules and the core kernel that are
152 		 * resolved via PLTs. (Branches between modules will be
153 		 * resolved normally.)
154 		 */
155 		module_range = SZ_4G - (u64)(_end - _stext);
156 		module_alloc_base = max((u64)_end + offset - SZ_4G,
157 					(u64)MODULES_VADDR);
158 	} else {
159 		/*
160 		 * Randomize the module region by setting module_alloc_base to
161 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
162 		 * _stext) . This guarantees that the resulting region still
163 		 * covers [_stext, _etext], and that all relative branches can
164 		 * be resolved without veneers.
165 		 */
166 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
167 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
168 	}
169 
170 	/* use the lower 21 bits to randomize the base of the module region */
171 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
172 	module_alloc_base &= PAGE_MASK;
173 
174 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
175 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
176 
177 	return offset;
178 }
179