xref: /openbmc/linux/arch/arm64/kernel/hibernate.c (revision f220d3eb)
1 /*:
2  * Hibernate support specific for ARM64
3  *
4  * Derived from work on ARM hibernation support by:
5  *
6  * Ubuntu project, hibernation support for mach-dove
7  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
8  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
9  *  https://lkml.org/lkml/2010/6/18/4
10  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
11  *  https://patchwork.kernel.org/patch/96442/
12  *
13  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
14  *
15  * License terms: GNU General Public License (GPL) version 2
16  */
17 #define pr_fmt(x) "hibernate: " x
18 #include <linux/cpu.h>
19 #include <linux/kvm_host.h>
20 #include <linux/mm.h>
21 #include <linux/pm.h>
22 #include <linux/sched.h>
23 #include <linux/suspend.h>
24 #include <linux/utsname.h>
25 #include <linux/version.h>
26 
27 #include <asm/barrier.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/daifflags.h>
31 #include <asm/irqflags.h>
32 #include <asm/kexec.h>
33 #include <asm/memory.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgalloc.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgtable-hwdef.h>
38 #include <asm/sections.h>
39 #include <asm/smp.h>
40 #include <asm/smp_plat.h>
41 #include <asm/suspend.h>
42 #include <asm/sysreg.h>
43 #include <asm/virt.h>
44 
45 /*
46  * Hibernate core relies on this value being 0 on resume, and marks it
47  * __nosavedata assuming it will keep the resume kernel's '0' value. This
48  * doesn't happen with either KASLR.
49  *
50  * defined as "__visible int in_suspend __nosavedata" in
51  * kernel/power/hibernate.c
52  */
53 extern int in_suspend;
54 
55 /* Do we need to reset el2? */
56 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
57 
58 /* temporary el2 vectors in the __hibernate_exit_text section. */
59 extern char hibernate_el2_vectors[];
60 
61 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
62 extern char __hyp_stub_vectors[];
63 
64 /*
65  * The logical cpu number we should resume on, initialised to a non-cpu
66  * number.
67  */
68 static int sleep_cpu = -EINVAL;
69 
70 /*
71  * Values that may not change over hibernate/resume. We put the build number
72  * and date in here so that we guarantee not to resume with a different
73  * kernel.
74  */
75 struct arch_hibernate_hdr_invariants {
76 	char		uts_version[__NEW_UTS_LEN + 1];
77 };
78 
79 /* These values need to be know across a hibernate/restore. */
80 static struct arch_hibernate_hdr {
81 	struct arch_hibernate_hdr_invariants invariants;
82 
83 	/* These are needed to find the relocated kernel if built with kaslr */
84 	phys_addr_t	ttbr1_el1;
85 	void		(*reenter_kernel)(void);
86 
87 	/*
88 	 * We need to know where the __hyp_stub_vectors are after restore to
89 	 * re-configure el2.
90 	 */
91 	phys_addr_t	__hyp_stub_vectors;
92 
93 	u64		sleep_cpu_mpidr;
94 } resume_hdr;
95 
96 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
97 {
98 	memset(i, 0, sizeof(*i));
99 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
100 }
101 
102 int pfn_is_nosave(unsigned long pfn)
103 {
104 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
105 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
106 
107 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
108 		crash_is_nosave(pfn);
109 }
110 
111 void notrace save_processor_state(void)
112 {
113 	WARN_ON(num_online_cpus() != 1);
114 }
115 
116 void notrace restore_processor_state(void)
117 {
118 }
119 
120 int arch_hibernation_header_save(void *addr, unsigned int max_size)
121 {
122 	struct arch_hibernate_hdr *hdr = addr;
123 
124 	if (max_size < sizeof(*hdr))
125 		return -EOVERFLOW;
126 
127 	arch_hdr_invariants(&hdr->invariants);
128 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
129 	hdr->reenter_kernel	= _cpu_resume;
130 
131 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
132 	if (el2_reset_needed())
133 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
134 	else
135 		hdr->__hyp_stub_vectors = 0;
136 
137 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
138 	if (sleep_cpu < 0) {
139 		pr_err("Failing to hibernate on an unknown CPU.\n");
140 		return -ENODEV;
141 	}
142 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
143 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
144 		hdr->sleep_cpu_mpidr);
145 
146 	return 0;
147 }
148 EXPORT_SYMBOL(arch_hibernation_header_save);
149 
150 int arch_hibernation_header_restore(void *addr)
151 {
152 	int ret;
153 	struct arch_hibernate_hdr_invariants invariants;
154 	struct arch_hibernate_hdr *hdr = addr;
155 
156 	arch_hdr_invariants(&invariants);
157 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
158 		pr_crit("Hibernate image not generated by this kernel!\n");
159 		return -EINVAL;
160 	}
161 
162 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
163 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
164 		hdr->sleep_cpu_mpidr);
165 	if (sleep_cpu < 0) {
166 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
167 		sleep_cpu = -EINVAL;
168 		return -EINVAL;
169 	}
170 	if (!cpu_online(sleep_cpu)) {
171 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
172 		ret = cpu_up(sleep_cpu);
173 		if (ret) {
174 			pr_err("Failed to bring hibernate-CPU up!\n");
175 			sleep_cpu = -EINVAL;
176 			return ret;
177 		}
178 	}
179 
180 	resume_hdr = *hdr;
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL(arch_hibernation_header_restore);
185 
186 /*
187  * Copies length bytes, starting at src_start into an new page,
188  * perform cache maintentance, then maps it at the specified address low
189  * address as executable.
190  *
191  * This is used by hibernate to copy the code it needs to execute when
192  * overwriting the kernel text. This function generates a new set of page
193  * tables, which it loads into ttbr0.
194  *
195  * Length is provided as we probably only want 4K of data, even on a 64K
196  * page system.
197  */
198 static int create_safe_exec_page(void *src_start, size_t length,
199 				 unsigned long dst_addr,
200 				 phys_addr_t *phys_dst_addr,
201 				 void *(*allocator)(gfp_t mask),
202 				 gfp_t mask)
203 {
204 	int rc = 0;
205 	pgd_t *pgdp;
206 	pud_t *pudp;
207 	pmd_t *pmdp;
208 	pte_t *ptep;
209 	unsigned long dst = (unsigned long)allocator(mask);
210 
211 	if (!dst) {
212 		rc = -ENOMEM;
213 		goto out;
214 	}
215 
216 	memcpy((void *)dst, src_start, length);
217 	flush_icache_range(dst, dst + length);
218 
219 	pgdp = pgd_offset_raw(allocator(mask), dst_addr);
220 	if (pgd_none(READ_ONCE(*pgdp))) {
221 		pudp = allocator(mask);
222 		if (!pudp) {
223 			rc = -ENOMEM;
224 			goto out;
225 		}
226 		pgd_populate(&init_mm, pgdp, pudp);
227 	}
228 
229 	pudp = pud_offset(pgdp, dst_addr);
230 	if (pud_none(READ_ONCE(*pudp))) {
231 		pmdp = allocator(mask);
232 		if (!pmdp) {
233 			rc = -ENOMEM;
234 			goto out;
235 		}
236 		pud_populate(&init_mm, pudp, pmdp);
237 	}
238 
239 	pmdp = pmd_offset(pudp, dst_addr);
240 	if (pmd_none(READ_ONCE(*pmdp))) {
241 		ptep = allocator(mask);
242 		if (!ptep) {
243 			rc = -ENOMEM;
244 			goto out;
245 		}
246 		pmd_populate_kernel(&init_mm, pmdp, ptep);
247 	}
248 
249 	ptep = pte_offset_kernel(pmdp, dst_addr);
250 	set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC));
251 
252 	/*
253 	 * Load our new page tables. A strict BBM approach requires that we
254 	 * ensure that TLBs are free of any entries that may overlap with the
255 	 * global mappings we are about to install.
256 	 *
257 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
258 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
259 	 * runtime services), while for a userspace-driven test_resume cycle it
260 	 * points to userspace page tables (and we must point it at a zero page
261 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
262 	 * disabled, so T0SZ should be as required regardless.
263 	 */
264 	cpu_set_reserved_ttbr0();
265 	local_flush_tlb_all();
266 	write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1);
267 	isb();
268 
269 	*phys_dst_addr = virt_to_phys((void *)dst);
270 
271 out:
272 	return rc;
273 }
274 
275 #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
276 
277 int swsusp_arch_suspend(void)
278 {
279 	int ret = 0;
280 	unsigned long flags;
281 	struct sleep_stack_data state;
282 
283 	if (cpus_are_stuck_in_kernel()) {
284 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
285 		return -EBUSY;
286 	}
287 
288 	flags = local_daif_save();
289 
290 	if (__cpu_suspend_enter(&state)) {
291 		/* make the crash dump kernel image visible/saveable */
292 		crash_prepare_suspend();
293 
294 		sleep_cpu = smp_processor_id();
295 		ret = swsusp_save();
296 	} else {
297 		/* Clean kernel core startup/idle code to PoC*/
298 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
299 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
300 
301 		/* Clean kvm setup code to PoC? */
302 		if (el2_reset_needed())
303 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
304 
305 		/* make the crash dump kernel image protected again */
306 		crash_post_resume();
307 
308 		/*
309 		 * Tell the hibernation core that we've just restored
310 		 * the memory
311 		 */
312 		in_suspend = 0;
313 
314 		sleep_cpu = -EINVAL;
315 		__cpu_suspend_exit();
316 
317 		/*
318 		 * Just in case the boot kernel did turn the SSBD
319 		 * mitigation off behind our back, let's set the state
320 		 * to what we expect it to be.
321 		 */
322 		switch (arm64_get_ssbd_state()) {
323 		case ARM64_SSBD_FORCE_ENABLE:
324 		case ARM64_SSBD_KERNEL:
325 			arm64_set_ssbd_mitigation(true);
326 		}
327 	}
328 
329 	local_daif_restore(flags);
330 
331 	return ret;
332 }
333 
334 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
335 {
336 	pte_t pte = READ_ONCE(*src_ptep);
337 
338 	if (pte_valid(pte)) {
339 		/*
340 		 * Resume will overwrite areas that may be marked
341 		 * read only (code, rodata). Clear the RDONLY bit from
342 		 * the temporary mappings we use during restore.
343 		 */
344 		set_pte(dst_ptep, pte_mkwrite(pte));
345 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
346 		/*
347 		 * debug_pagealloc will removed the PTE_VALID bit if
348 		 * the page isn't in use by the resume kernel. It may have
349 		 * been in use by the original kernel, in which case we need
350 		 * to put it back in our copy to do the restore.
351 		 *
352 		 * Before marking this entry valid, check the pfn should
353 		 * be mapped.
354 		 */
355 		BUG_ON(!pfn_valid(pte_pfn(pte)));
356 
357 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
358 	}
359 }
360 
361 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
362 		    unsigned long end)
363 {
364 	pte_t *src_ptep;
365 	pte_t *dst_ptep;
366 	unsigned long addr = start;
367 
368 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
369 	if (!dst_ptep)
370 		return -ENOMEM;
371 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
372 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
373 
374 	src_ptep = pte_offset_kernel(src_pmdp, start);
375 	do {
376 		_copy_pte(dst_ptep, src_ptep, addr);
377 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
378 
379 	return 0;
380 }
381 
382 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
383 		    unsigned long end)
384 {
385 	pmd_t *src_pmdp;
386 	pmd_t *dst_pmdp;
387 	unsigned long next;
388 	unsigned long addr = start;
389 
390 	if (pud_none(READ_ONCE(*dst_pudp))) {
391 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
392 		if (!dst_pmdp)
393 			return -ENOMEM;
394 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
395 	}
396 	dst_pmdp = pmd_offset(dst_pudp, start);
397 
398 	src_pmdp = pmd_offset(src_pudp, start);
399 	do {
400 		pmd_t pmd = READ_ONCE(*src_pmdp);
401 
402 		next = pmd_addr_end(addr, end);
403 		if (pmd_none(pmd))
404 			continue;
405 		if (pmd_table(pmd)) {
406 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
407 				return -ENOMEM;
408 		} else {
409 			set_pmd(dst_pmdp,
410 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
411 		}
412 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
413 
414 	return 0;
415 }
416 
417 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
418 		    unsigned long end)
419 {
420 	pud_t *dst_pudp;
421 	pud_t *src_pudp;
422 	unsigned long next;
423 	unsigned long addr = start;
424 
425 	if (pgd_none(READ_ONCE(*dst_pgdp))) {
426 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
427 		if (!dst_pudp)
428 			return -ENOMEM;
429 		pgd_populate(&init_mm, dst_pgdp, dst_pudp);
430 	}
431 	dst_pudp = pud_offset(dst_pgdp, start);
432 
433 	src_pudp = pud_offset(src_pgdp, start);
434 	do {
435 		pud_t pud = READ_ONCE(*src_pudp);
436 
437 		next = pud_addr_end(addr, end);
438 		if (pud_none(pud))
439 			continue;
440 		if (pud_table(pud)) {
441 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
442 				return -ENOMEM;
443 		} else {
444 			set_pud(dst_pudp,
445 				__pud(pud_val(pud) & ~PMD_SECT_RDONLY));
446 		}
447 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
448 
449 	return 0;
450 }
451 
452 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
453 			    unsigned long end)
454 {
455 	unsigned long next;
456 	unsigned long addr = start;
457 	pgd_t *src_pgdp = pgd_offset_k(start);
458 
459 	dst_pgdp = pgd_offset_raw(dst_pgdp, start);
460 	do {
461 		next = pgd_addr_end(addr, end);
462 		if (pgd_none(READ_ONCE(*src_pgdp)))
463 			continue;
464 		if (copy_pud(dst_pgdp, src_pgdp, addr, next))
465 			return -ENOMEM;
466 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
467 
468 	return 0;
469 }
470 
471 /*
472  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
473  *
474  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
475  * we don't need to free it here.
476  */
477 int swsusp_arch_resume(void)
478 {
479 	int rc = 0;
480 	void *zero_page;
481 	size_t exit_size;
482 	pgd_t *tmp_pg_dir;
483 	phys_addr_t phys_hibernate_exit;
484 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
485 					  void *, phys_addr_t, phys_addr_t);
486 
487 	/*
488 	 * Restoring the memory image will overwrite the ttbr1 page tables.
489 	 * Create a second copy of just the linear map, and use this when
490 	 * restoring.
491 	 */
492 	tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
493 	if (!tmp_pg_dir) {
494 		pr_err("Failed to allocate memory for temporary page tables.\n");
495 		rc = -ENOMEM;
496 		goto out;
497 	}
498 	rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
499 	if (rc)
500 		goto out;
501 
502 	/*
503 	 * We need a zero page that is zero before & after resume in order to
504 	 * to break before make on the ttbr1 page tables.
505 	 */
506 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
507 	if (!zero_page) {
508 		pr_err("Failed to allocate zero page.\n");
509 		rc = -ENOMEM;
510 		goto out;
511 	}
512 
513 	/*
514 	 * Locate the exit code in the bottom-but-one page, so that *NULL
515 	 * still has disastrous affects.
516 	 */
517 	hibernate_exit = (void *)PAGE_SIZE;
518 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
519 	/*
520 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
521 	 * a new set of ttbr0 page tables and load them.
522 	 */
523 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
524 				   (unsigned long)hibernate_exit,
525 				   &phys_hibernate_exit,
526 				   (void *)get_safe_page, GFP_ATOMIC);
527 	if (rc) {
528 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
529 		goto out;
530 	}
531 
532 	/*
533 	 * The hibernate exit text contains a set of el2 vectors, that will
534 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
535 	 */
536 	__flush_dcache_area(hibernate_exit, exit_size);
537 
538 	/*
539 	 * KASLR will cause the el2 vectors to be in a different location in
540 	 * the resumed kernel. Load hibernate's temporary copy into el2.
541 	 *
542 	 * We can skip this step if we booted at EL1, or are running with VHE.
543 	 */
544 	if (el2_reset_needed()) {
545 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
546 		el2_vectors += hibernate_el2_vectors -
547 			       __hibernate_exit_text_start;     /* offset */
548 
549 		__hyp_set_vectors(el2_vectors);
550 	}
551 
552 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
553 		       resume_hdr.reenter_kernel, restore_pblist,
554 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
555 
556 out:
557 	return rc;
558 }
559 
560 int hibernate_resume_nonboot_cpu_disable(void)
561 {
562 	if (sleep_cpu < 0) {
563 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
564 		return -ENODEV;
565 	}
566 
567 	return freeze_secondary_cpus(sleep_cpu);
568 }
569