xref: /openbmc/linux/arch/arm64/kernel/hibernate.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/pm.h>
20 #include <linux/sched.h>
21 #include <linux/suspend.h>
22 #include <linux/utsname.h>
23 
24 #include <asm/barrier.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cputype.h>
27 #include <asm/daifflags.h>
28 #include <asm/irqflags.h>
29 #include <asm/kexec.h>
30 #include <asm/memory.h>
31 #include <asm/mmu_context.h>
32 #include <asm/mte.h>
33 #include <asm/sections.h>
34 #include <asm/smp.h>
35 #include <asm/smp_plat.h>
36 #include <asm/suspend.h>
37 #include <asm/sysreg.h>
38 #include <asm/trans_pgd.h>
39 #include <asm/virt.h>
40 
41 /*
42  * Hibernate core relies on this value being 0 on resume, and marks it
43  * __nosavedata assuming it will keep the resume kernel's '0' value. This
44  * doesn't happen with either KASLR.
45  *
46  * defined as "__visible int in_suspend __nosavedata" in
47  * kernel/power/hibernate.c
48  */
49 extern int in_suspend;
50 
51 /* Do we need to reset el2? */
52 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
53 
54 /* temporary el2 vectors in the __hibernate_exit_text section. */
55 extern char hibernate_el2_vectors[];
56 
57 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
58 extern char __hyp_stub_vectors[];
59 
60 /*
61  * The logical cpu number we should resume on, initialised to a non-cpu
62  * number.
63  */
64 static int sleep_cpu = -EINVAL;
65 
66 /*
67  * Values that may not change over hibernate/resume. We put the build number
68  * and date in here so that we guarantee not to resume with a different
69  * kernel.
70  */
71 struct arch_hibernate_hdr_invariants {
72 	char		uts_version[__NEW_UTS_LEN + 1];
73 };
74 
75 /* These values need to be know across a hibernate/restore. */
76 static struct arch_hibernate_hdr {
77 	struct arch_hibernate_hdr_invariants invariants;
78 
79 	/* These are needed to find the relocated kernel if built with kaslr */
80 	phys_addr_t	ttbr1_el1;
81 	void		(*reenter_kernel)(void);
82 
83 	/*
84 	 * We need to know where the __hyp_stub_vectors are after restore to
85 	 * re-configure el2.
86 	 */
87 	phys_addr_t	__hyp_stub_vectors;
88 
89 	u64		sleep_cpu_mpidr;
90 } resume_hdr;
91 
92 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
93 {
94 	memset(i, 0, sizeof(*i));
95 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
96 }
97 
98 int pfn_is_nosave(unsigned long pfn)
99 {
100 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
101 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
102 
103 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
104 		crash_is_nosave(pfn);
105 }
106 
107 void notrace save_processor_state(void)
108 {
109 	WARN_ON(num_online_cpus() != 1);
110 }
111 
112 void notrace restore_processor_state(void)
113 {
114 }
115 
116 int arch_hibernation_header_save(void *addr, unsigned int max_size)
117 {
118 	struct arch_hibernate_hdr *hdr = addr;
119 
120 	if (max_size < sizeof(*hdr))
121 		return -EOVERFLOW;
122 
123 	arch_hdr_invariants(&hdr->invariants);
124 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
125 	hdr->reenter_kernel	= _cpu_resume;
126 
127 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
128 	if (el2_reset_needed())
129 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
130 	else
131 		hdr->__hyp_stub_vectors = 0;
132 
133 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
134 	if (sleep_cpu < 0) {
135 		pr_err("Failing to hibernate on an unknown CPU.\n");
136 		return -ENODEV;
137 	}
138 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
139 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
140 		hdr->sleep_cpu_mpidr);
141 
142 	return 0;
143 }
144 EXPORT_SYMBOL(arch_hibernation_header_save);
145 
146 int arch_hibernation_header_restore(void *addr)
147 {
148 	int ret;
149 	struct arch_hibernate_hdr_invariants invariants;
150 	struct arch_hibernate_hdr *hdr = addr;
151 
152 	arch_hdr_invariants(&invariants);
153 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
154 		pr_crit("Hibernate image not generated by this kernel!\n");
155 		return -EINVAL;
156 	}
157 
158 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
159 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
160 		hdr->sleep_cpu_mpidr);
161 	if (sleep_cpu < 0) {
162 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
163 		sleep_cpu = -EINVAL;
164 		return -EINVAL;
165 	}
166 
167 	ret = bringup_hibernate_cpu(sleep_cpu);
168 	if (ret) {
169 		sleep_cpu = -EINVAL;
170 		return ret;
171 	}
172 
173 	resume_hdr = *hdr;
174 
175 	return 0;
176 }
177 EXPORT_SYMBOL(arch_hibernation_header_restore);
178 
179 static void *hibernate_page_alloc(void *arg)
180 {
181 	return (void *)get_safe_page((__force gfp_t)(unsigned long)arg);
182 }
183 
184 /*
185  * Copies length bytes, starting at src_start into an new page,
186  * perform cache maintenance, then maps it at the specified address low
187  * address as executable.
188  *
189  * This is used by hibernate to copy the code it needs to execute when
190  * overwriting the kernel text. This function generates a new set of page
191  * tables, which it loads into ttbr0.
192  *
193  * Length is provided as we probably only want 4K of data, even on a 64K
194  * page system.
195  */
196 static int create_safe_exec_page(void *src_start, size_t length,
197 				 phys_addr_t *phys_dst_addr)
198 {
199 	struct trans_pgd_info trans_info = {
200 		.trans_alloc_page	= hibernate_page_alloc,
201 		.trans_alloc_arg	= (__force void *)GFP_ATOMIC,
202 	};
203 
204 	void *page = (void *)get_safe_page(GFP_ATOMIC);
205 	phys_addr_t trans_ttbr0;
206 	unsigned long t0sz;
207 	int rc;
208 
209 	if (!page)
210 		return -ENOMEM;
211 
212 	memcpy(page, src_start, length);
213 	caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
214 	rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page);
215 	if (rc)
216 		return rc;
217 
218 	/*
219 	 * Load our new page tables. A strict BBM approach requires that we
220 	 * ensure that TLBs are free of any entries that may overlap with the
221 	 * global mappings we are about to install.
222 	 *
223 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
224 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
225 	 * runtime services), while for a userspace-driven test_resume cycle it
226 	 * points to userspace page tables (and we must point it at a zero page
227 	 * ourselves).
228 	 *
229 	 * We change T0SZ as part of installing the idmap. This is undone by
230 	 * cpu_uninstall_idmap() in __cpu_suspend_exit().
231 	 */
232 	cpu_set_reserved_ttbr0();
233 	local_flush_tlb_all();
234 	__cpu_set_tcr_t0sz(t0sz);
235 	write_sysreg(trans_ttbr0, ttbr0_el1);
236 	isb();
237 
238 	*phys_dst_addr = virt_to_phys(page);
239 
240 	return 0;
241 }
242 
243 #ifdef CONFIG_ARM64_MTE
244 
245 static DEFINE_XARRAY(mte_pages);
246 
247 static int save_tags(struct page *page, unsigned long pfn)
248 {
249 	void *tag_storage, *ret;
250 
251 	tag_storage = mte_allocate_tag_storage();
252 	if (!tag_storage)
253 		return -ENOMEM;
254 
255 	mte_save_page_tags(page_address(page), tag_storage);
256 
257 	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
258 	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
259 		mte_free_tag_storage(tag_storage);
260 		return xa_err(ret);
261 	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
262 		mte_free_tag_storage(ret);
263 	}
264 
265 	return 0;
266 }
267 
268 static void swsusp_mte_free_storage(void)
269 {
270 	XA_STATE(xa_state, &mte_pages, 0);
271 	void *tags;
272 
273 	xa_lock(&mte_pages);
274 	xas_for_each(&xa_state, tags, ULONG_MAX) {
275 		mte_free_tag_storage(tags);
276 	}
277 	xa_unlock(&mte_pages);
278 
279 	xa_destroy(&mte_pages);
280 }
281 
282 static int swsusp_mte_save_tags(void)
283 {
284 	struct zone *zone;
285 	unsigned long pfn, max_zone_pfn;
286 	int ret = 0;
287 	int n = 0;
288 
289 	if (!system_supports_mte())
290 		return 0;
291 
292 	for_each_populated_zone(zone) {
293 		max_zone_pfn = zone_end_pfn(zone);
294 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
295 			struct page *page = pfn_to_online_page(pfn);
296 
297 			if (!page)
298 				continue;
299 
300 			if (!test_bit(PG_mte_tagged, &page->flags))
301 				continue;
302 
303 			ret = save_tags(page, pfn);
304 			if (ret) {
305 				swsusp_mte_free_storage();
306 				goto out;
307 			}
308 
309 			n++;
310 		}
311 	}
312 	pr_info("Saved %d MTE pages\n", n);
313 
314 out:
315 	return ret;
316 }
317 
318 static void swsusp_mte_restore_tags(void)
319 {
320 	XA_STATE(xa_state, &mte_pages, 0);
321 	int n = 0;
322 	void *tags;
323 
324 	xa_lock(&mte_pages);
325 	xas_for_each(&xa_state, tags, ULONG_MAX) {
326 		unsigned long pfn = xa_state.xa_index;
327 		struct page *page = pfn_to_online_page(pfn);
328 
329 		/*
330 		 * It is not required to invoke page_kasan_tag_reset(page)
331 		 * at this point since the tags stored in page->flags are
332 		 * already restored.
333 		 */
334 		mte_restore_page_tags(page_address(page), tags);
335 
336 		mte_free_tag_storage(tags);
337 		n++;
338 	}
339 	xa_unlock(&mte_pages);
340 
341 	pr_info("Restored %d MTE pages\n", n);
342 
343 	xa_destroy(&mte_pages);
344 }
345 
346 #else	/* CONFIG_ARM64_MTE */
347 
348 static int swsusp_mte_save_tags(void)
349 {
350 	return 0;
351 }
352 
353 static void swsusp_mte_restore_tags(void)
354 {
355 }
356 
357 #endif	/* CONFIG_ARM64_MTE */
358 
359 int swsusp_arch_suspend(void)
360 {
361 	int ret = 0;
362 	unsigned long flags;
363 	struct sleep_stack_data state;
364 
365 	if (cpus_are_stuck_in_kernel()) {
366 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
367 		return -EBUSY;
368 	}
369 
370 	flags = local_daif_save();
371 
372 	if (__cpu_suspend_enter(&state)) {
373 		/* make the crash dump kernel image visible/saveable */
374 		crash_prepare_suspend();
375 
376 		ret = swsusp_mte_save_tags();
377 		if (ret)
378 			return ret;
379 
380 		sleep_cpu = smp_processor_id();
381 		ret = swsusp_save();
382 	} else {
383 		/* Clean kernel core startup/idle code to PoC*/
384 		dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
385 				    (unsigned long)__mmuoff_data_end);
386 		dcache_clean_inval_poc((unsigned long)__idmap_text_start,
387 				    (unsigned long)__idmap_text_end);
388 
389 		/* Clean kvm setup code to PoC? */
390 		if (el2_reset_needed()) {
391 			dcache_clean_inval_poc(
392 				(unsigned long)__hyp_idmap_text_start,
393 				(unsigned long)__hyp_idmap_text_end);
394 			dcache_clean_inval_poc((unsigned long)__hyp_text_start,
395 					    (unsigned long)__hyp_text_end);
396 		}
397 
398 		swsusp_mte_restore_tags();
399 
400 		/* make the crash dump kernel image protected again */
401 		crash_post_resume();
402 
403 		/*
404 		 * Tell the hibernation core that we've just restored
405 		 * the memory
406 		 */
407 		in_suspend = 0;
408 
409 		sleep_cpu = -EINVAL;
410 		__cpu_suspend_exit();
411 
412 		/*
413 		 * Just in case the boot kernel did turn the SSBD
414 		 * mitigation off behind our back, let's set the state
415 		 * to what we expect it to be.
416 		 */
417 		spectre_v4_enable_mitigation(NULL);
418 	}
419 
420 	local_daif_restore(flags);
421 
422 	return ret;
423 }
424 
425 /*
426  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
427  *
428  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
429  * we don't need to free it here.
430  */
431 int swsusp_arch_resume(void)
432 {
433 	int rc;
434 	void *zero_page;
435 	size_t exit_size;
436 	pgd_t *tmp_pg_dir;
437 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
438 					  void *, phys_addr_t, phys_addr_t);
439 	struct trans_pgd_info trans_info = {
440 		.trans_alloc_page	= hibernate_page_alloc,
441 		.trans_alloc_arg	= (void *)GFP_ATOMIC,
442 	};
443 
444 	/*
445 	 * Restoring the memory image will overwrite the ttbr1 page tables.
446 	 * Create a second copy of just the linear map, and use this when
447 	 * restoring.
448 	 */
449 	rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET,
450 				   PAGE_END);
451 	if (rc)
452 		return rc;
453 
454 	/*
455 	 * We need a zero page that is zero before & after resume in order to
456 	 * to break before make on the ttbr1 page tables.
457 	 */
458 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
459 	if (!zero_page) {
460 		pr_err("Failed to allocate zero page.\n");
461 		return -ENOMEM;
462 	}
463 
464 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
465 	/*
466 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
467 	 * a new set of ttbr0 page tables and load them.
468 	 */
469 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
470 				   (phys_addr_t *)&hibernate_exit);
471 	if (rc) {
472 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
473 		return rc;
474 	}
475 
476 	/*
477 	 * The hibernate exit text contains a set of el2 vectors, that will
478 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
479 	 */
480 	dcache_clean_inval_poc((unsigned long)hibernate_exit,
481 			    (unsigned long)hibernate_exit + exit_size);
482 
483 	/*
484 	 * KASLR will cause the el2 vectors to be in a different location in
485 	 * the resumed kernel. Load hibernate's temporary copy into el2.
486 	 *
487 	 * We can skip this step if we booted at EL1, or are running with VHE.
488 	 */
489 	if (el2_reset_needed()) {
490 		phys_addr_t el2_vectors = (phys_addr_t)hibernate_exit;
491 		el2_vectors += hibernate_el2_vectors -
492 			       __hibernate_exit_text_start;     /* offset */
493 
494 		__hyp_set_vectors(el2_vectors);
495 	}
496 
497 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
498 		       resume_hdr.reenter_kernel, restore_pblist,
499 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
500 
501 	return 0;
502 }
503 
504 int hibernate_resume_nonboot_cpu_disable(void)
505 {
506 	if (sleep_cpu < 0) {
507 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
508 		return -ENODEV;
509 	}
510 
511 	return freeze_secondary_cpus(sleep_cpu);
512 }
513