1 // SPDX-License-Identifier: GPL-2.0-only 2 /*: 3 * Hibernate support specific for ARM64 4 * 5 * Derived from work on ARM hibernation support by: 6 * 7 * Ubuntu project, hibernation support for mach-dove 8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 10 * https://lkml.org/lkml/2010/6/18/4 11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 12 * https://patchwork.kernel.org/patch/96442/ 13 * 14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 15 */ 16 #define pr_fmt(x) "hibernate: " x 17 #include <linux/cpu.h> 18 #include <linux/kvm_host.h> 19 #include <linux/pm.h> 20 #include <linux/sched.h> 21 #include <linux/suspend.h> 22 #include <linux/utsname.h> 23 24 #include <asm/barrier.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cputype.h> 27 #include <asm/daifflags.h> 28 #include <asm/irqflags.h> 29 #include <asm/kexec.h> 30 #include <asm/memory.h> 31 #include <asm/mmu_context.h> 32 #include <asm/mte.h> 33 #include <asm/sections.h> 34 #include <asm/smp.h> 35 #include <asm/smp_plat.h> 36 #include <asm/suspend.h> 37 #include <asm/sysreg.h> 38 #include <asm/trans_pgd.h> 39 #include <asm/virt.h> 40 41 /* 42 * Hibernate core relies on this value being 0 on resume, and marks it 43 * __nosavedata assuming it will keep the resume kernel's '0' value. This 44 * doesn't happen with either KASLR. 45 * 46 * defined as "__visible int in_suspend __nosavedata" in 47 * kernel/power/hibernate.c 48 */ 49 extern int in_suspend; 50 51 /* Do we need to reset el2? */ 52 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 53 54 /* temporary el2 vectors in the __hibernate_exit_text section. */ 55 extern char hibernate_el2_vectors[]; 56 57 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 58 extern char __hyp_stub_vectors[]; 59 60 /* 61 * The logical cpu number we should resume on, initialised to a non-cpu 62 * number. 63 */ 64 static int sleep_cpu = -EINVAL; 65 66 /* 67 * Values that may not change over hibernate/resume. We put the build number 68 * and date in here so that we guarantee not to resume with a different 69 * kernel. 70 */ 71 struct arch_hibernate_hdr_invariants { 72 char uts_version[__NEW_UTS_LEN + 1]; 73 }; 74 75 /* These values need to be know across a hibernate/restore. */ 76 static struct arch_hibernate_hdr { 77 struct arch_hibernate_hdr_invariants invariants; 78 79 /* These are needed to find the relocated kernel if built with kaslr */ 80 phys_addr_t ttbr1_el1; 81 void (*reenter_kernel)(void); 82 83 /* 84 * We need to know where the __hyp_stub_vectors are after restore to 85 * re-configure el2. 86 */ 87 phys_addr_t __hyp_stub_vectors; 88 89 u64 sleep_cpu_mpidr; 90 } resume_hdr; 91 92 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 93 { 94 memset(i, 0, sizeof(*i)); 95 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 96 } 97 98 int pfn_is_nosave(unsigned long pfn) 99 { 100 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 101 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 102 103 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 104 crash_is_nosave(pfn); 105 } 106 107 void notrace save_processor_state(void) 108 { 109 WARN_ON(num_online_cpus() != 1); 110 } 111 112 void notrace restore_processor_state(void) 113 { 114 } 115 116 int arch_hibernation_header_save(void *addr, unsigned int max_size) 117 { 118 struct arch_hibernate_hdr *hdr = addr; 119 120 if (max_size < sizeof(*hdr)) 121 return -EOVERFLOW; 122 123 arch_hdr_invariants(&hdr->invariants); 124 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 125 hdr->reenter_kernel = _cpu_resume; 126 127 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 128 if (el2_reset_needed()) 129 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 130 else 131 hdr->__hyp_stub_vectors = 0; 132 133 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 134 if (sleep_cpu < 0) { 135 pr_err("Failing to hibernate on an unknown CPU.\n"); 136 return -ENODEV; 137 } 138 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 139 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 140 hdr->sleep_cpu_mpidr); 141 142 return 0; 143 } 144 EXPORT_SYMBOL(arch_hibernation_header_save); 145 146 int arch_hibernation_header_restore(void *addr) 147 { 148 int ret; 149 struct arch_hibernate_hdr_invariants invariants; 150 struct arch_hibernate_hdr *hdr = addr; 151 152 arch_hdr_invariants(&invariants); 153 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 154 pr_crit("Hibernate image not generated by this kernel!\n"); 155 return -EINVAL; 156 } 157 158 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 159 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 160 hdr->sleep_cpu_mpidr); 161 if (sleep_cpu < 0) { 162 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 163 sleep_cpu = -EINVAL; 164 return -EINVAL; 165 } 166 167 ret = bringup_hibernate_cpu(sleep_cpu); 168 if (ret) { 169 sleep_cpu = -EINVAL; 170 return ret; 171 } 172 173 resume_hdr = *hdr; 174 175 return 0; 176 } 177 EXPORT_SYMBOL(arch_hibernation_header_restore); 178 179 static void *hibernate_page_alloc(void *arg) 180 { 181 return (void *)get_safe_page((__force gfp_t)(unsigned long)arg); 182 } 183 184 /* 185 * Copies length bytes, starting at src_start into an new page, 186 * perform cache maintenance, then maps it at the specified address low 187 * address as executable. 188 * 189 * This is used by hibernate to copy the code it needs to execute when 190 * overwriting the kernel text. This function generates a new set of page 191 * tables, which it loads into ttbr0. 192 * 193 * Length is provided as we probably only want 4K of data, even on a 64K 194 * page system. 195 */ 196 static int create_safe_exec_page(void *src_start, size_t length, 197 phys_addr_t *phys_dst_addr) 198 { 199 struct trans_pgd_info trans_info = { 200 .trans_alloc_page = hibernate_page_alloc, 201 .trans_alloc_arg = (__force void *)GFP_ATOMIC, 202 }; 203 204 void *page = (void *)get_safe_page(GFP_ATOMIC); 205 phys_addr_t trans_ttbr0; 206 unsigned long t0sz; 207 int rc; 208 209 if (!page) 210 return -ENOMEM; 211 212 memcpy(page, src_start, length); 213 __flush_icache_range((unsigned long)page, (unsigned long)page + length); 214 rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page); 215 if (rc) 216 return rc; 217 218 /* 219 * Load our new page tables. A strict BBM approach requires that we 220 * ensure that TLBs are free of any entries that may overlap with the 221 * global mappings we are about to install. 222 * 223 * For a real hibernate/resume cycle TTBR0 currently points to a zero 224 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 225 * runtime services), while for a userspace-driven test_resume cycle it 226 * points to userspace page tables (and we must point it at a zero page 227 * ourselves). 228 * 229 * We change T0SZ as part of installing the idmap. This is undone by 230 * cpu_uninstall_idmap() in __cpu_suspend_exit(). 231 */ 232 cpu_set_reserved_ttbr0(); 233 local_flush_tlb_all(); 234 __cpu_set_tcr_t0sz(t0sz); 235 write_sysreg(trans_ttbr0, ttbr0_el1); 236 isb(); 237 238 *phys_dst_addr = virt_to_phys(page); 239 240 return 0; 241 } 242 243 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 244 245 #ifdef CONFIG_ARM64_MTE 246 247 static DEFINE_XARRAY(mte_pages); 248 249 static int save_tags(struct page *page, unsigned long pfn) 250 { 251 void *tag_storage, *ret; 252 253 tag_storage = mte_allocate_tag_storage(); 254 if (!tag_storage) 255 return -ENOMEM; 256 257 mte_save_page_tags(page_address(page), tag_storage); 258 259 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); 260 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { 261 mte_free_tag_storage(tag_storage); 262 return xa_err(ret); 263 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { 264 mte_free_tag_storage(ret); 265 } 266 267 return 0; 268 } 269 270 static void swsusp_mte_free_storage(void) 271 { 272 XA_STATE(xa_state, &mte_pages, 0); 273 void *tags; 274 275 xa_lock(&mte_pages); 276 xas_for_each(&xa_state, tags, ULONG_MAX) { 277 mte_free_tag_storage(tags); 278 } 279 xa_unlock(&mte_pages); 280 281 xa_destroy(&mte_pages); 282 } 283 284 static int swsusp_mte_save_tags(void) 285 { 286 struct zone *zone; 287 unsigned long pfn, max_zone_pfn; 288 int ret = 0; 289 int n = 0; 290 291 if (!system_supports_mte()) 292 return 0; 293 294 for_each_populated_zone(zone) { 295 max_zone_pfn = zone_end_pfn(zone); 296 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 297 struct page *page = pfn_to_online_page(pfn); 298 299 if (!page) 300 continue; 301 302 if (!test_bit(PG_mte_tagged, &page->flags)) 303 continue; 304 305 ret = save_tags(page, pfn); 306 if (ret) { 307 swsusp_mte_free_storage(); 308 goto out; 309 } 310 311 n++; 312 } 313 } 314 pr_info("Saved %d MTE pages\n", n); 315 316 out: 317 return ret; 318 } 319 320 static void swsusp_mte_restore_tags(void) 321 { 322 XA_STATE(xa_state, &mte_pages, 0); 323 int n = 0; 324 void *tags; 325 326 xa_lock(&mte_pages); 327 xas_for_each(&xa_state, tags, ULONG_MAX) { 328 unsigned long pfn = xa_state.xa_index; 329 struct page *page = pfn_to_online_page(pfn); 330 331 /* 332 * It is not required to invoke page_kasan_tag_reset(page) 333 * at this point since the tags stored in page->flags are 334 * already restored. 335 */ 336 mte_restore_page_tags(page_address(page), tags); 337 338 mte_free_tag_storage(tags); 339 n++; 340 } 341 xa_unlock(&mte_pages); 342 343 pr_info("Restored %d MTE pages\n", n); 344 345 xa_destroy(&mte_pages); 346 } 347 348 #else /* CONFIG_ARM64_MTE */ 349 350 static int swsusp_mte_save_tags(void) 351 { 352 return 0; 353 } 354 355 static void swsusp_mte_restore_tags(void) 356 { 357 } 358 359 #endif /* CONFIG_ARM64_MTE */ 360 361 int swsusp_arch_suspend(void) 362 { 363 int ret = 0; 364 unsigned long flags; 365 struct sleep_stack_data state; 366 367 if (cpus_are_stuck_in_kernel()) { 368 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 369 return -EBUSY; 370 } 371 372 flags = local_daif_save(); 373 374 if (__cpu_suspend_enter(&state)) { 375 /* make the crash dump kernel image visible/saveable */ 376 crash_prepare_suspend(); 377 378 ret = swsusp_mte_save_tags(); 379 if (ret) 380 return ret; 381 382 sleep_cpu = smp_processor_id(); 383 ret = swsusp_save(); 384 } else { 385 /* Clean kernel core startup/idle code to PoC*/ 386 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 387 dcache_clean_range(__idmap_text_start, __idmap_text_end); 388 389 /* Clean kvm setup code to PoC? */ 390 if (el2_reset_needed()) { 391 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 392 dcache_clean_range(__hyp_text_start, __hyp_text_end); 393 } 394 395 swsusp_mte_restore_tags(); 396 397 /* make the crash dump kernel image protected again */ 398 crash_post_resume(); 399 400 /* 401 * Tell the hibernation core that we've just restored 402 * the memory 403 */ 404 in_suspend = 0; 405 406 sleep_cpu = -EINVAL; 407 __cpu_suspend_exit(); 408 409 /* 410 * Just in case the boot kernel did turn the SSBD 411 * mitigation off behind our back, let's set the state 412 * to what we expect it to be. 413 */ 414 spectre_v4_enable_mitigation(NULL); 415 } 416 417 local_daif_restore(flags); 418 419 return ret; 420 } 421 422 /* 423 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 424 * 425 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 426 * we don't need to free it here. 427 */ 428 int swsusp_arch_resume(void) 429 { 430 int rc; 431 void *zero_page; 432 size_t exit_size; 433 pgd_t *tmp_pg_dir; 434 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 435 void *, phys_addr_t, phys_addr_t); 436 struct trans_pgd_info trans_info = { 437 .trans_alloc_page = hibernate_page_alloc, 438 .trans_alloc_arg = (void *)GFP_ATOMIC, 439 }; 440 441 /* 442 * Restoring the memory image will overwrite the ttbr1 page tables. 443 * Create a second copy of just the linear map, and use this when 444 * restoring. 445 */ 446 rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET, 447 PAGE_END); 448 if (rc) 449 return rc; 450 451 /* 452 * We need a zero page that is zero before & after resume in order to 453 * to break before make on the ttbr1 page tables. 454 */ 455 zero_page = (void *)get_safe_page(GFP_ATOMIC); 456 if (!zero_page) { 457 pr_err("Failed to allocate zero page.\n"); 458 return -ENOMEM; 459 } 460 461 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 462 /* 463 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 464 * a new set of ttbr0 page tables and load them. 465 */ 466 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 467 (phys_addr_t *)&hibernate_exit); 468 if (rc) { 469 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 470 return rc; 471 } 472 473 /* 474 * The hibernate exit text contains a set of el2 vectors, that will 475 * be executed at el2 with the mmu off in order to reload hyp-stub. 476 */ 477 __flush_dcache_area(hibernate_exit, exit_size); 478 479 /* 480 * KASLR will cause the el2 vectors to be in a different location in 481 * the resumed kernel. Load hibernate's temporary copy into el2. 482 * 483 * We can skip this step if we booted at EL1, or are running with VHE. 484 */ 485 if (el2_reset_needed()) { 486 phys_addr_t el2_vectors = (phys_addr_t)hibernate_exit; 487 el2_vectors += hibernate_el2_vectors - 488 __hibernate_exit_text_start; /* offset */ 489 490 __hyp_set_vectors(el2_vectors); 491 } 492 493 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 494 resume_hdr.reenter_kernel, restore_pblist, 495 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 496 497 return 0; 498 } 499 500 int hibernate_resume_nonboot_cpu_disable(void) 501 { 502 if (sleep_cpu < 0) { 503 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 504 return -ENODEV; 505 } 506 507 return freeze_secondary_cpus(sleep_cpu); 508 } 509