1 /*: 2 * Hibernate support specific for ARM64 3 * 4 * Derived from work on ARM hibernation support by: 5 * 6 * Ubuntu project, hibernation support for mach-dove 7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 9 * https://lkml.org/lkml/2010/6/18/4 10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 11 * https://patchwork.kernel.org/patch/96442/ 12 * 13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 14 * 15 * License terms: GNU General Public License (GPL) version 2 16 */ 17 #define pr_fmt(x) "hibernate: " x 18 #include <linux/cpu.h> 19 #include <linux/kvm_host.h> 20 #include <linux/mm.h> 21 #include <linux/pm.h> 22 #include <linux/sched.h> 23 #include <linux/suspend.h> 24 #include <linux/utsname.h> 25 #include <linux/version.h> 26 27 #include <asm/barrier.h> 28 #include <asm/cacheflush.h> 29 #include <asm/cputype.h> 30 #include <asm/daifflags.h> 31 #include <asm/irqflags.h> 32 #include <asm/kexec.h> 33 #include <asm/memory.h> 34 #include <asm/mmu_context.h> 35 #include <asm/pgalloc.h> 36 #include <asm/pgtable.h> 37 #include <asm/pgtable-hwdef.h> 38 #include <asm/sections.h> 39 #include <asm/smp.h> 40 #include <asm/smp_plat.h> 41 #include <asm/suspend.h> 42 #include <asm/sysreg.h> 43 #include <asm/virt.h> 44 45 /* 46 * Hibernate core relies on this value being 0 on resume, and marks it 47 * __nosavedata assuming it will keep the resume kernel's '0' value. This 48 * doesn't happen with either KASLR. 49 * 50 * defined as "__visible int in_suspend __nosavedata" in 51 * kernel/power/hibernate.c 52 */ 53 extern int in_suspend; 54 55 /* Do we need to reset el2? */ 56 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 57 58 /* temporary el2 vectors in the __hibernate_exit_text section. */ 59 extern char hibernate_el2_vectors[]; 60 61 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 62 extern char __hyp_stub_vectors[]; 63 64 /* 65 * The logical cpu number we should resume on, initialised to a non-cpu 66 * number. 67 */ 68 static int sleep_cpu = -EINVAL; 69 70 /* 71 * Values that may not change over hibernate/resume. We put the build number 72 * and date in here so that we guarantee not to resume with a different 73 * kernel. 74 */ 75 struct arch_hibernate_hdr_invariants { 76 char uts_version[__NEW_UTS_LEN + 1]; 77 }; 78 79 /* These values need to be know across a hibernate/restore. */ 80 static struct arch_hibernate_hdr { 81 struct arch_hibernate_hdr_invariants invariants; 82 83 /* These are needed to find the relocated kernel if built with kaslr */ 84 phys_addr_t ttbr1_el1; 85 void (*reenter_kernel)(void); 86 87 /* 88 * We need to know where the __hyp_stub_vectors are after restore to 89 * re-configure el2. 90 */ 91 phys_addr_t __hyp_stub_vectors; 92 93 u64 sleep_cpu_mpidr; 94 } resume_hdr; 95 96 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 97 { 98 memset(i, 0, sizeof(*i)); 99 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 100 } 101 102 int pfn_is_nosave(unsigned long pfn) 103 { 104 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 105 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 106 107 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 108 crash_is_nosave(pfn); 109 } 110 111 void notrace save_processor_state(void) 112 { 113 WARN_ON(num_online_cpus() != 1); 114 } 115 116 void notrace restore_processor_state(void) 117 { 118 } 119 120 int arch_hibernation_header_save(void *addr, unsigned int max_size) 121 { 122 struct arch_hibernate_hdr *hdr = addr; 123 124 if (max_size < sizeof(*hdr)) 125 return -EOVERFLOW; 126 127 arch_hdr_invariants(&hdr->invariants); 128 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 129 hdr->reenter_kernel = _cpu_resume; 130 131 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 132 if (el2_reset_needed()) 133 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 134 else 135 hdr->__hyp_stub_vectors = 0; 136 137 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 138 if (sleep_cpu < 0) { 139 pr_err("Failing to hibernate on an unknown CPU.\n"); 140 return -ENODEV; 141 } 142 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 143 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 144 hdr->sleep_cpu_mpidr); 145 146 return 0; 147 } 148 EXPORT_SYMBOL(arch_hibernation_header_save); 149 150 int arch_hibernation_header_restore(void *addr) 151 { 152 int ret; 153 struct arch_hibernate_hdr_invariants invariants; 154 struct arch_hibernate_hdr *hdr = addr; 155 156 arch_hdr_invariants(&invariants); 157 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 158 pr_crit("Hibernate image not generated by this kernel!\n"); 159 return -EINVAL; 160 } 161 162 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 163 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 164 hdr->sleep_cpu_mpidr); 165 if (sleep_cpu < 0) { 166 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 167 sleep_cpu = -EINVAL; 168 return -EINVAL; 169 } 170 if (!cpu_online(sleep_cpu)) { 171 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 172 ret = cpu_up(sleep_cpu); 173 if (ret) { 174 pr_err("Failed to bring hibernate-CPU up!\n"); 175 sleep_cpu = -EINVAL; 176 return ret; 177 } 178 } 179 180 resume_hdr = *hdr; 181 182 return 0; 183 } 184 EXPORT_SYMBOL(arch_hibernation_header_restore); 185 186 /* 187 * Copies length bytes, starting at src_start into an new page, 188 * perform cache maintentance, then maps it at the specified address low 189 * address as executable. 190 * 191 * This is used by hibernate to copy the code it needs to execute when 192 * overwriting the kernel text. This function generates a new set of page 193 * tables, which it loads into ttbr0. 194 * 195 * Length is provided as we probably only want 4K of data, even on a 64K 196 * page system. 197 */ 198 static int create_safe_exec_page(void *src_start, size_t length, 199 unsigned long dst_addr, 200 phys_addr_t *phys_dst_addr, 201 void *(*allocator)(gfp_t mask), 202 gfp_t mask) 203 { 204 int rc = 0; 205 pgd_t *pgdp; 206 pud_t *pudp; 207 pmd_t *pmdp; 208 pte_t *ptep; 209 unsigned long dst = (unsigned long)allocator(mask); 210 211 if (!dst) { 212 rc = -ENOMEM; 213 goto out; 214 } 215 216 memcpy((void *)dst, src_start, length); 217 flush_icache_range(dst, dst + length); 218 219 pgdp = pgd_offset_raw(allocator(mask), dst_addr); 220 if (pgd_none(READ_ONCE(*pgdp))) { 221 pudp = allocator(mask); 222 if (!pudp) { 223 rc = -ENOMEM; 224 goto out; 225 } 226 pgd_populate(&init_mm, pgdp, pudp); 227 } 228 229 pudp = pud_offset(pgdp, dst_addr); 230 if (pud_none(READ_ONCE(*pudp))) { 231 pmdp = allocator(mask); 232 if (!pmdp) { 233 rc = -ENOMEM; 234 goto out; 235 } 236 pud_populate(&init_mm, pudp, pmdp); 237 } 238 239 pmdp = pmd_offset(pudp, dst_addr); 240 if (pmd_none(READ_ONCE(*pmdp))) { 241 ptep = allocator(mask); 242 if (!ptep) { 243 rc = -ENOMEM; 244 goto out; 245 } 246 pmd_populate_kernel(&init_mm, pmdp, ptep); 247 } 248 249 ptep = pte_offset_kernel(pmdp, dst_addr); 250 set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC)); 251 252 /* 253 * Load our new page tables. A strict BBM approach requires that we 254 * ensure that TLBs are free of any entries that may overlap with the 255 * global mappings we are about to install. 256 * 257 * For a real hibernate/resume cycle TTBR0 currently points to a zero 258 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 259 * runtime services), while for a userspace-driven test_resume cycle it 260 * points to userspace page tables (and we must point it at a zero page 261 * ourselves). Elsewhere we only (un)install the idmap with preemption 262 * disabled, so T0SZ should be as required regardless. 263 */ 264 cpu_set_reserved_ttbr0(); 265 local_flush_tlb_all(); 266 write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1); 267 isb(); 268 269 *phys_dst_addr = virt_to_phys((void *)dst); 270 271 out: 272 return rc; 273 } 274 275 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 276 277 int swsusp_arch_suspend(void) 278 { 279 int ret = 0; 280 unsigned long flags; 281 struct sleep_stack_data state; 282 283 if (cpus_are_stuck_in_kernel()) { 284 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 285 return -EBUSY; 286 } 287 288 flags = local_daif_save(); 289 290 if (__cpu_suspend_enter(&state)) { 291 /* make the crash dump kernel image visible/saveable */ 292 crash_prepare_suspend(); 293 294 sleep_cpu = smp_processor_id(); 295 ret = swsusp_save(); 296 } else { 297 /* Clean kernel core startup/idle code to PoC*/ 298 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 299 dcache_clean_range(__idmap_text_start, __idmap_text_end); 300 301 /* Clean kvm setup code to PoC? */ 302 if (el2_reset_needed()) 303 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 304 305 /* make the crash dump kernel image protected again */ 306 crash_post_resume(); 307 308 /* 309 * Tell the hibernation core that we've just restored 310 * the memory 311 */ 312 in_suspend = 0; 313 314 sleep_cpu = -EINVAL; 315 __cpu_suspend_exit(); 316 } 317 318 local_daif_restore(flags); 319 320 return ret; 321 } 322 323 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr) 324 { 325 pte_t pte = READ_ONCE(*src_ptep); 326 327 if (pte_valid(pte)) { 328 /* 329 * Resume will overwrite areas that may be marked 330 * read only (code, rodata). Clear the RDONLY bit from 331 * the temporary mappings we use during restore. 332 */ 333 set_pte(dst_ptep, pte_mkwrite(pte)); 334 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 335 /* 336 * debug_pagealloc will removed the PTE_VALID bit if 337 * the page isn't in use by the resume kernel. It may have 338 * been in use by the original kernel, in which case we need 339 * to put it back in our copy to do the restore. 340 * 341 * Before marking this entry valid, check the pfn should 342 * be mapped. 343 */ 344 BUG_ON(!pfn_valid(pte_pfn(pte))); 345 346 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte))); 347 } 348 } 349 350 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start, 351 unsigned long end) 352 { 353 pte_t *src_ptep; 354 pte_t *dst_ptep; 355 unsigned long addr = start; 356 357 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC); 358 if (!dst_ptep) 359 return -ENOMEM; 360 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep); 361 dst_ptep = pte_offset_kernel(dst_pmdp, start); 362 363 src_ptep = pte_offset_kernel(src_pmdp, start); 364 do { 365 _copy_pte(dst_ptep, src_ptep, addr); 366 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end); 367 368 return 0; 369 } 370 371 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start, 372 unsigned long end) 373 { 374 pmd_t *src_pmdp; 375 pmd_t *dst_pmdp; 376 unsigned long next; 377 unsigned long addr = start; 378 379 if (pud_none(READ_ONCE(*dst_pudp))) { 380 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC); 381 if (!dst_pmdp) 382 return -ENOMEM; 383 pud_populate(&init_mm, dst_pudp, dst_pmdp); 384 } 385 dst_pmdp = pmd_offset(dst_pudp, start); 386 387 src_pmdp = pmd_offset(src_pudp, start); 388 do { 389 pmd_t pmd = READ_ONCE(*src_pmdp); 390 391 next = pmd_addr_end(addr, end); 392 if (pmd_none(pmd)) 393 continue; 394 if (pmd_table(pmd)) { 395 if (copy_pte(dst_pmdp, src_pmdp, addr, next)) 396 return -ENOMEM; 397 } else { 398 set_pmd(dst_pmdp, 399 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY)); 400 } 401 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end); 402 403 return 0; 404 } 405 406 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start, 407 unsigned long end) 408 { 409 pud_t *dst_pudp; 410 pud_t *src_pudp; 411 unsigned long next; 412 unsigned long addr = start; 413 414 if (pgd_none(READ_ONCE(*dst_pgdp))) { 415 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC); 416 if (!dst_pudp) 417 return -ENOMEM; 418 pgd_populate(&init_mm, dst_pgdp, dst_pudp); 419 } 420 dst_pudp = pud_offset(dst_pgdp, start); 421 422 src_pudp = pud_offset(src_pgdp, start); 423 do { 424 pud_t pud = READ_ONCE(*src_pudp); 425 426 next = pud_addr_end(addr, end); 427 if (pud_none(pud)) 428 continue; 429 if (pud_table(pud)) { 430 if (copy_pmd(dst_pudp, src_pudp, addr, next)) 431 return -ENOMEM; 432 } else { 433 set_pud(dst_pudp, 434 __pud(pud_val(pud) & ~PMD_SECT_RDONLY)); 435 } 436 } while (dst_pudp++, src_pudp++, addr = next, addr != end); 437 438 return 0; 439 } 440 441 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start, 442 unsigned long end) 443 { 444 unsigned long next; 445 unsigned long addr = start; 446 pgd_t *src_pgdp = pgd_offset_k(start); 447 448 dst_pgdp = pgd_offset_raw(dst_pgdp, start); 449 do { 450 next = pgd_addr_end(addr, end); 451 if (pgd_none(READ_ONCE(*src_pgdp))) 452 continue; 453 if (copy_pud(dst_pgdp, src_pgdp, addr, next)) 454 return -ENOMEM; 455 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); 456 457 return 0; 458 } 459 460 /* 461 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 462 * 463 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 464 * we don't need to free it here. 465 */ 466 int swsusp_arch_resume(void) 467 { 468 int rc = 0; 469 void *zero_page; 470 size_t exit_size; 471 pgd_t *tmp_pg_dir; 472 phys_addr_t phys_hibernate_exit; 473 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 474 void *, phys_addr_t, phys_addr_t); 475 476 /* 477 * Restoring the memory image will overwrite the ttbr1 page tables. 478 * Create a second copy of just the linear map, and use this when 479 * restoring. 480 */ 481 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 482 if (!tmp_pg_dir) { 483 pr_err("Failed to allocate memory for temporary page tables.\n"); 484 rc = -ENOMEM; 485 goto out; 486 } 487 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 488 if (rc) 489 goto out; 490 491 /* 492 * We need a zero page that is zero before & after resume in order to 493 * to break before make on the ttbr1 page tables. 494 */ 495 zero_page = (void *)get_safe_page(GFP_ATOMIC); 496 if (!zero_page) { 497 pr_err("Failed to allocate zero page.\n"); 498 rc = -ENOMEM; 499 goto out; 500 } 501 502 /* 503 * Locate the exit code in the bottom-but-one page, so that *NULL 504 * still has disastrous affects. 505 */ 506 hibernate_exit = (void *)PAGE_SIZE; 507 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 508 /* 509 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 510 * a new set of ttbr0 page tables and load them. 511 */ 512 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 513 (unsigned long)hibernate_exit, 514 &phys_hibernate_exit, 515 (void *)get_safe_page, GFP_ATOMIC); 516 if (rc) { 517 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 518 goto out; 519 } 520 521 /* 522 * The hibernate exit text contains a set of el2 vectors, that will 523 * be executed at el2 with the mmu off in order to reload hyp-stub. 524 */ 525 __flush_dcache_area(hibernate_exit, exit_size); 526 527 /* 528 * KASLR will cause the el2 vectors to be in a different location in 529 * the resumed kernel. Load hibernate's temporary copy into el2. 530 * 531 * We can skip this step if we booted at EL1, or are running with VHE. 532 */ 533 if (el2_reset_needed()) { 534 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 535 el2_vectors += hibernate_el2_vectors - 536 __hibernate_exit_text_start; /* offset */ 537 538 __hyp_set_vectors(el2_vectors); 539 } 540 541 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 542 resume_hdr.reenter_kernel, restore_pblist, 543 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 544 545 out: 546 return rc; 547 } 548 549 int hibernate_resume_nonboot_cpu_disable(void) 550 { 551 if (sleep_cpu < 0) { 552 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 553 return -ENODEV; 554 } 555 556 return freeze_secondary_cpus(sleep_cpu); 557 } 558