1 // SPDX-License-Identifier: GPL-2.0-only 2 /*: 3 * Hibernate support specific for ARM64 4 * 5 * Derived from work on ARM hibernation support by: 6 * 7 * Ubuntu project, hibernation support for mach-dove 8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 10 * https://lkml.org/lkml/2010/6/18/4 11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 12 * https://patchwork.kernel.org/patch/96442/ 13 * 14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 15 */ 16 #define pr_fmt(x) "hibernate: " x 17 #include <linux/cpu.h> 18 #include <linux/kvm_host.h> 19 #include <linux/mm.h> 20 #include <linux/pm.h> 21 #include <linux/sched.h> 22 #include <linux/suspend.h> 23 #include <linux/utsname.h> 24 #include <linux/version.h> 25 26 #include <asm/barrier.h> 27 #include <asm/cacheflush.h> 28 #include <asm/cputype.h> 29 #include <asm/daifflags.h> 30 #include <asm/irqflags.h> 31 #include <asm/kexec.h> 32 #include <asm/memory.h> 33 #include <asm/mmu_context.h> 34 #include <asm/pgalloc.h> 35 #include <asm/pgtable.h> 36 #include <asm/pgtable-hwdef.h> 37 #include <asm/sections.h> 38 #include <asm/smp.h> 39 #include <asm/smp_plat.h> 40 #include <asm/suspend.h> 41 #include <asm/sysreg.h> 42 #include <asm/virt.h> 43 44 /* 45 * Hibernate core relies on this value being 0 on resume, and marks it 46 * __nosavedata assuming it will keep the resume kernel's '0' value. This 47 * doesn't happen with either KASLR. 48 * 49 * defined as "__visible int in_suspend __nosavedata" in 50 * kernel/power/hibernate.c 51 */ 52 extern int in_suspend; 53 54 /* Do we need to reset el2? */ 55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 56 57 /* temporary el2 vectors in the __hibernate_exit_text section. */ 58 extern char hibernate_el2_vectors[]; 59 60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 61 extern char __hyp_stub_vectors[]; 62 63 /* 64 * The logical cpu number we should resume on, initialised to a non-cpu 65 * number. 66 */ 67 static int sleep_cpu = -EINVAL; 68 69 /* 70 * Values that may not change over hibernate/resume. We put the build number 71 * and date in here so that we guarantee not to resume with a different 72 * kernel. 73 */ 74 struct arch_hibernate_hdr_invariants { 75 char uts_version[__NEW_UTS_LEN + 1]; 76 }; 77 78 /* These values need to be know across a hibernate/restore. */ 79 static struct arch_hibernate_hdr { 80 struct arch_hibernate_hdr_invariants invariants; 81 82 /* These are needed to find the relocated kernel if built with kaslr */ 83 phys_addr_t ttbr1_el1; 84 void (*reenter_kernel)(void); 85 86 /* 87 * We need to know where the __hyp_stub_vectors are after restore to 88 * re-configure el2. 89 */ 90 phys_addr_t __hyp_stub_vectors; 91 92 u64 sleep_cpu_mpidr; 93 } resume_hdr; 94 95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 96 { 97 memset(i, 0, sizeof(*i)); 98 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 99 } 100 101 int pfn_is_nosave(unsigned long pfn) 102 { 103 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 104 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 105 106 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 107 crash_is_nosave(pfn); 108 } 109 110 void notrace save_processor_state(void) 111 { 112 WARN_ON(num_online_cpus() != 1); 113 } 114 115 void notrace restore_processor_state(void) 116 { 117 } 118 119 int arch_hibernation_header_save(void *addr, unsigned int max_size) 120 { 121 struct arch_hibernate_hdr *hdr = addr; 122 123 if (max_size < sizeof(*hdr)) 124 return -EOVERFLOW; 125 126 arch_hdr_invariants(&hdr->invariants); 127 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 128 hdr->reenter_kernel = _cpu_resume; 129 130 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 131 if (el2_reset_needed()) 132 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 133 else 134 hdr->__hyp_stub_vectors = 0; 135 136 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 137 if (sleep_cpu < 0) { 138 pr_err("Failing to hibernate on an unknown CPU.\n"); 139 return -ENODEV; 140 } 141 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 142 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 143 hdr->sleep_cpu_mpidr); 144 145 return 0; 146 } 147 EXPORT_SYMBOL(arch_hibernation_header_save); 148 149 int arch_hibernation_header_restore(void *addr) 150 { 151 int ret; 152 struct arch_hibernate_hdr_invariants invariants; 153 struct arch_hibernate_hdr *hdr = addr; 154 155 arch_hdr_invariants(&invariants); 156 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 157 pr_crit("Hibernate image not generated by this kernel!\n"); 158 return -EINVAL; 159 } 160 161 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 162 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 163 hdr->sleep_cpu_mpidr); 164 if (sleep_cpu < 0) { 165 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 166 sleep_cpu = -EINVAL; 167 return -EINVAL; 168 } 169 if (!cpu_online(sleep_cpu)) { 170 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 171 ret = cpu_up(sleep_cpu); 172 if (ret) { 173 pr_err("Failed to bring hibernate-CPU up!\n"); 174 sleep_cpu = -EINVAL; 175 return ret; 176 } 177 } 178 179 resume_hdr = *hdr; 180 181 return 0; 182 } 183 EXPORT_SYMBOL(arch_hibernation_header_restore); 184 185 /* 186 * Copies length bytes, starting at src_start into an new page, 187 * perform cache maintentance, then maps it at the specified address low 188 * address as executable. 189 * 190 * This is used by hibernate to copy the code it needs to execute when 191 * overwriting the kernel text. This function generates a new set of page 192 * tables, which it loads into ttbr0. 193 * 194 * Length is provided as we probably only want 4K of data, even on a 64K 195 * page system. 196 */ 197 static int create_safe_exec_page(void *src_start, size_t length, 198 unsigned long dst_addr, 199 phys_addr_t *phys_dst_addr, 200 void *(*allocator)(gfp_t mask), 201 gfp_t mask) 202 { 203 int rc = 0; 204 pgd_t *pgdp; 205 pud_t *pudp; 206 pmd_t *pmdp; 207 pte_t *ptep; 208 unsigned long dst = (unsigned long)allocator(mask); 209 210 if (!dst) { 211 rc = -ENOMEM; 212 goto out; 213 } 214 215 memcpy((void *)dst, src_start, length); 216 __flush_icache_range(dst, dst + length); 217 218 pgdp = pgd_offset_raw(allocator(mask), dst_addr); 219 if (pgd_none(READ_ONCE(*pgdp))) { 220 pudp = allocator(mask); 221 if (!pudp) { 222 rc = -ENOMEM; 223 goto out; 224 } 225 pgd_populate(&init_mm, pgdp, pudp); 226 } 227 228 pudp = pud_offset(pgdp, dst_addr); 229 if (pud_none(READ_ONCE(*pudp))) { 230 pmdp = allocator(mask); 231 if (!pmdp) { 232 rc = -ENOMEM; 233 goto out; 234 } 235 pud_populate(&init_mm, pudp, pmdp); 236 } 237 238 pmdp = pmd_offset(pudp, dst_addr); 239 if (pmd_none(READ_ONCE(*pmdp))) { 240 ptep = allocator(mask); 241 if (!ptep) { 242 rc = -ENOMEM; 243 goto out; 244 } 245 pmd_populate_kernel(&init_mm, pmdp, ptep); 246 } 247 248 ptep = pte_offset_kernel(pmdp, dst_addr); 249 set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC)); 250 251 /* 252 * Load our new page tables. A strict BBM approach requires that we 253 * ensure that TLBs are free of any entries that may overlap with the 254 * global mappings we are about to install. 255 * 256 * For a real hibernate/resume cycle TTBR0 currently points to a zero 257 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 258 * runtime services), while for a userspace-driven test_resume cycle it 259 * points to userspace page tables (and we must point it at a zero page 260 * ourselves). Elsewhere we only (un)install the idmap with preemption 261 * disabled, so T0SZ should be as required regardless. 262 */ 263 cpu_set_reserved_ttbr0(); 264 local_flush_tlb_all(); 265 write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1); 266 isb(); 267 268 *phys_dst_addr = virt_to_phys((void *)dst); 269 270 out: 271 return rc; 272 } 273 274 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 275 276 int swsusp_arch_suspend(void) 277 { 278 int ret = 0; 279 unsigned long flags; 280 struct sleep_stack_data state; 281 282 if (cpus_are_stuck_in_kernel()) { 283 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 284 return -EBUSY; 285 } 286 287 flags = local_daif_save(); 288 289 if (__cpu_suspend_enter(&state)) { 290 /* make the crash dump kernel image visible/saveable */ 291 crash_prepare_suspend(); 292 293 sleep_cpu = smp_processor_id(); 294 ret = swsusp_save(); 295 } else { 296 /* Clean kernel core startup/idle code to PoC*/ 297 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 298 dcache_clean_range(__idmap_text_start, __idmap_text_end); 299 300 /* Clean kvm setup code to PoC? */ 301 if (el2_reset_needed()) { 302 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 303 dcache_clean_range(__hyp_text_start, __hyp_text_end); 304 } 305 306 /* make the crash dump kernel image protected again */ 307 crash_post_resume(); 308 309 /* 310 * Tell the hibernation core that we've just restored 311 * the memory 312 */ 313 in_suspend = 0; 314 315 sleep_cpu = -EINVAL; 316 __cpu_suspend_exit(); 317 318 /* 319 * Just in case the boot kernel did turn the SSBD 320 * mitigation off behind our back, let's set the state 321 * to what we expect it to be. 322 */ 323 switch (arm64_get_ssbd_state()) { 324 case ARM64_SSBD_FORCE_ENABLE: 325 case ARM64_SSBD_KERNEL: 326 arm64_set_ssbd_mitigation(true); 327 } 328 } 329 330 local_daif_restore(flags); 331 332 return ret; 333 } 334 335 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr) 336 { 337 pte_t pte = READ_ONCE(*src_ptep); 338 339 if (pte_valid(pte)) { 340 /* 341 * Resume will overwrite areas that may be marked 342 * read only (code, rodata). Clear the RDONLY bit from 343 * the temporary mappings we use during restore. 344 */ 345 set_pte(dst_ptep, pte_mkwrite(pte)); 346 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 347 /* 348 * debug_pagealloc will removed the PTE_VALID bit if 349 * the page isn't in use by the resume kernel. It may have 350 * been in use by the original kernel, in which case we need 351 * to put it back in our copy to do the restore. 352 * 353 * Before marking this entry valid, check the pfn should 354 * be mapped. 355 */ 356 BUG_ON(!pfn_valid(pte_pfn(pte))); 357 358 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte))); 359 } 360 } 361 362 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start, 363 unsigned long end) 364 { 365 pte_t *src_ptep; 366 pte_t *dst_ptep; 367 unsigned long addr = start; 368 369 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC); 370 if (!dst_ptep) 371 return -ENOMEM; 372 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep); 373 dst_ptep = pte_offset_kernel(dst_pmdp, start); 374 375 src_ptep = pte_offset_kernel(src_pmdp, start); 376 do { 377 _copy_pte(dst_ptep, src_ptep, addr); 378 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end); 379 380 return 0; 381 } 382 383 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start, 384 unsigned long end) 385 { 386 pmd_t *src_pmdp; 387 pmd_t *dst_pmdp; 388 unsigned long next; 389 unsigned long addr = start; 390 391 if (pud_none(READ_ONCE(*dst_pudp))) { 392 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC); 393 if (!dst_pmdp) 394 return -ENOMEM; 395 pud_populate(&init_mm, dst_pudp, dst_pmdp); 396 } 397 dst_pmdp = pmd_offset(dst_pudp, start); 398 399 src_pmdp = pmd_offset(src_pudp, start); 400 do { 401 pmd_t pmd = READ_ONCE(*src_pmdp); 402 403 next = pmd_addr_end(addr, end); 404 if (pmd_none(pmd)) 405 continue; 406 if (pmd_table(pmd)) { 407 if (copy_pte(dst_pmdp, src_pmdp, addr, next)) 408 return -ENOMEM; 409 } else { 410 set_pmd(dst_pmdp, 411 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY)); 412 } 413 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end); 414 415 return 0; 416 } 417 418 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start, 419 unsigned long end) 420 { 421 pud_t *dst_pudp; 422 pud_t *src_pudp; 423 unsigned long next; 424 unsigned long addr = start; 425 426 if (pgd_none(READ_ONCE(*dst_pgdp))) { 427 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC); 428 if (!dst_pudp) 429 return -ENOMEM; 430 pgd_populate(&init_mm, dst_pgdp, dst_pudp); 431 } 432 dst_pudp = pud_offset(dst_pgdp, start); 433 434 src_pudp = pud_offset(src_pgdp, start); 435 do { 436 pud_t pud = READ_ONCE(*src_pudp); 437 438 next = pud_addr_end(addr, end); 439 if (pud_none(pud)) 440 continue; 441 if (pud_table(pud)) { 442 if (copy_pmd(dst_pudp, src_pudp, addr, next)) 443 return -ENOMEM; 444 } else { 445 set_pud(dst_pudp, 446 __pud(pud_val(pud) & ~PMD_SECT_RDONLY)); 447 } 448 } while (dst_pudp++, src_pudp++, addr = next, addr != end); 449 450 return 0; 451 } 452 453 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start, 454 unsigned long end) 455 { 456 unsigned long next; 457 unsigned long addr = start; 458 pgd_t *src_pgdp = pgd_offset_k(start); 459 460 dst_pgdp = pgd_offset_raw(dst_pgdp, start); 461 do { 462 next = pgd_addr_end(addr, end); 463 if (pgd_none(READ_ONCE(*src_pgdp))) 464 continue; 465 if (copy_pud(dst_pgdp, src_pgdp, addr, next)) 466 return -ENOMEM; 467 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); 468 469 return 0; 470 } 471 472 /* 473 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 474 * 475 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 476 * we don't need to free it here. 477 */ 478 int swsusp_arch_resume(void) 479 { 480 int rc = 0; 481 void *zero_page; 482 size_t exit_size; 483 pgd_t *tmp_pg_dir; 484 phys_addr_t phys_hibernate_exit; 485 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 486 void *, phys_addr_t, phys_addr_t); 487 488 /* 489 * Restoring the memory image will overwrite the ttbr1 page tables. 490 * Create a second copy of just the linear map, and use this when 491 * restoring. 492 */ 493 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 494 if (!tmp_pg_dir) { 495 pr_err("Failed to allocate memory for temporary page tables.\n"); 496 rc = -ENOMEM; 497 goto out; 498 } 499 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 500 if (rc) 501 goto out; 502 503 /* 504 * We need a zero page that is zero before & after resume in order to 505 * to break before make on the ttbr1 page tables. 506 */ 507 zero_page = (void *)get_safe_page(GFP_ATOMIC); 508 if (!zero_page) { 509 pr_err("Failed to allocate zero page.\n"); 510 rc = -ENOMEM; 511 goto out; 512 } 513 514 /* 515 * Locate the exit code in the bottom-but-one page, so that *NULL 516 * still has disastrous affects. 517 */ 518 hibernate_exit = (void *)PAGE_SIZE; 519 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 520 /* 521 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 522 * a new set of ttbr0 page tables and load them. 523 */ 524 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 525 (unsigned long)hibernate_exit, 526 &phys_hibernate_exit, 527 (void *)get_safe_page, GFP_ATOMIC); 528 if (rc) { 529 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 530 goto out; 531 } 532 533 /* 534 * The hibernate exit text contains a set of el2 vectors, that will 535 * be executed at el2 with the mmu off in order to reload hyp-stub. 536 */ 537 __flush_dcache_area(hibernate_exit, exit_size); 538 539 /* 540 * KASLR will cause the el2 vectors to be in a different location in 541 * the resumed kernel. Load hibernate's temporary copy into el2. 542 * 543 * We can skip this step if we booted at EL1, or are running with VHE. 544 */ 545 if (el2_reset_needed()) { 546 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 547 el2_vectors += hibernate_el2_vectors - 548 __hibernate_exit_text_start; /* offset */ 549 550 __hyp_set_vectors(el2_vectors); 551 } 552 553 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 554 resume_hdr.reenter_kernel, restore_pblist, 555 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 556 557 out: 558 return rc; 559 } 560 561 int hibernate_resume_nonboot_cpu_disable(void) 562 { 563 if (sleep_cpu < 0) { 564 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 565 return -ENODEV; 566 } 567 568 return freeze_secondary_cpus(sleep_cpu); 569 } 570