1 /*: 2 * Hibernate support specific for ARM64 3 * 4 * Derived from work on ARM hibernation support by: 5 * 6 * Ubuntu project, hibernation support for mach-dove 7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 9 * https://lkml.org/lkml/2010/6/18/4 10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 11 * https://patchwork.kernel.org/patch/96442/ 12 * 13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 14 * 15 * License terms: GNU General Public License (GPL) version 2 16 */ 17 #define pr_fmt(x) "hibernate: " x 18 #include <linux/cpu.h> 19 #include <linux/kvm_host.h> 20 #include <linux/mm.h> 21 #include <linux/pm.h> 22 #include <linux/sched.h> 23 #include <linux/suspend.h> 24 #include <linux/utsname.h> 25 #include <linux/version.h> 26 27 #include <asm/barrier.h> 28 #include <asm/cacheflush.h> 29 #include <asm/cputype.h> 30 #include <asm/irqflags.h> 31 #include <asm/kexec.h> 32 #include <asm/memory.h> 33 #include <asm/mmu_context.h> 34 #include <asm/pgalloc.h> 35 #include <asm/pgtable.h> 36 #include <asm/pgtable-hwdef.h> 37 #include <asm/sections.h> 38 #include <asm/smp.h> 39 #include <asm/smp_plat.h> 40 #include <asm/suspend.h> 41 #include <asm/sysreg.h> 42 #include <asm/virt.h> 43 44 /* 45 * Hibernate core relies on this value being 0 on resume, and marks it 46 * __nosavedata assuming it will keep the resume kernel's '0' value. This 47 * doesn't happen with either KASLR. 48 * 49 * defined as "__visible int in_suspend __nosavedata" in 50 * kernel/power/hibernate.c 51 */ 52 extern int in_suspend; 53 54 /* Do we need to reset el2? */ 55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 56 57 /* temporary el2 vectors in the __hibernate_exit_text section. */ 58 extern char hibernate_el2_vectors[]; 59 60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 61 extern char __hyp_stub_vectors[]; 62 63 /* 64 * The logical cpu number we should resume on, initialised to a non-cpu 65 * number. 66 */ 67 static int sleep_cpu = -EINVAL; 68 69 /* 70 * Values that may not change over hibernate/resume. We put the build number 71 * and date in here so that we guarantee not to resume with a different 72 * kernel. 73 */ 74 struct arch_hibernate_hdr_invariants { 75 char uts_version[__NEW_UTS_LEN + 1]; 76 }; 77 78 /* These values need to be know across a hibernate/restore. */ 79 static struct arch_hibernate_hdr { 80 struct arch_hibernate_hdr_invariants invariants; 81 82 /* These are needed to find the relocated kernel if built with kaslr */ 83 phys_addr_t ttbr1_el1; 84 void (*reenter_kernel)(void); 85 86 /* 87 * We need to know where the __hyp_stub_vectors are after restore to 88 * re-configure el2. 89 */ 90 phys_addr_t __hyp_stub_vectors; 91 92 u64 sleep_cpu_mpidr; 93 } resume_hdr; 94 95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 96 { 97 memset(i, 0, sizeof(*i)); 98 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 99 } 100 101 int pfn_is_nosave(unsigned long pfn) 102 { 103 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 104 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 105 106 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 107 crash_is_nosave(pfn); 108 } 109 110 void notrace save_processor_state(void) 111 { 112 WARN_ON(num_online_cpus() != 1); 113 } 114 115 void notrace restore_processor_state(void) 116 { 117 } 118 119 int arch_hibernation_header_save(void *addr, unsigned int max_size) 120 { 121 struct arch_hibernate_hdr *hdr = addr; 122 123 if (max_size < sizeof(*hdr)) 124 return -EOVERFLOW; 125 126 arch_hdr_invariants(&hdr->invariants); 127 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 128 hdr->reenter_kernel = _cpu_resume; 129 130 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 131 if (el2_reset_needed()) 132 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 133 else 134 hdr->__hyp_stub_vectors = 0; 135 136 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 137 if (sleep_cpu < 0) { 138 pr_err("Failing to hibernate on an unknown CPU.\n"); 139 return -ENODEV; 140 } 141 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 142 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 143 hdr->sleep_cpu_mpidr); 144 145 return 0; 146 } 147 EXPORT_SYMBOL(arch_hibernation_header_save); 148 149 int arch_hibernation_header_restore(void *addr) 150 { 151 int ret; 152 struct arch_hibernate_hdr_invariants invariants; 153 struct arch_hibernate_hdr *hdr = addr; 154 155 arch_hdr_invariants(&invariants); 156 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 157 pr_crit("Hibernate image not generated by this kernel!\n"); 158 return -EINVAL; 159 } 160 161 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 162 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 163 hdr->sleep_cpu_mpidr); 164 if (sleep_cpu < 0) { 165 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 166 sleep_cpu = -EINVAL; 167 return -EINVAL; 168 } 169 if (!cpu_online(sleep_cpu)) { 170 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 171 ret = cpu_up(sleep_cpu); 172 if (ret) { 173 pr_err("Failed to bring hibernate-CPU up!\n"); 174 sleep_cpu = -EINVAL; 175 return ret; 176 } 177 } 178 179 resume_hdr = *hdr; 180 181 return 0; 182 } 183 EXPORT_SYMBOL(arch_hibernation_header_restore); 184 185 /* 186 * Copies length bytes, starting at src_start into an new page, 187 * perform cache maintentance, then maps it at the specified address low 188 * address as executable. 189 * 190 * This is used by hibernate to copy the code it needs to execute when 191 * overwriting the kernel text. This function generates a new set of page 192 * tables, which it loads into ttbr0. 193 * 194 * Length is provided as we probably only want 4K of data, even on a 64K 195 * page system. 196 */ 197 static int create_safe_exec_page(void *src_start, size_t length, 198 unsigned long dst_addr, 199 phys_addr_t *phys_dst_addr, 200 void *(*allocator)(gfp_t mask), 201 gfp_t mask) 202 { 203 int rc = 0; 204 pgd_t *pgd; 205 pud_t *pud; 206 pmd_t *pmd; 207 pte_t *pte; 208 unsigned long dst = (unsigned long)allocator(mask); 209 210 if (!dst) { 211 rc = -ENOMEM; 212 goto out; 213 } 214 215 memcpy((void *)dst, src_start, length); 216 flush_icache_range(dst, dst + length); 217 218 pgd = pgd_offset_raw(allocator(mask), dst_addr); 219 if (pgd_none(*pgd)) { 220 pud = allocator(mask); 221 if (!pud) { 222 rc = -ENOMEM; 223 goto out; 224 } 225 pgd_populate(&init_mm, pgd, pud); 226 } 227 228 pud = pud_offset(pgd, dst_addr); 229 if (pud_none(*pud)) { 230 pmd = allocator(mask); 231 if (!pmd) { 232 rc = -ENOMEM; 233 goto out; 234 } 235 pud_populate(&init_mm, pud, pmd); 236 } 237 238 pmd = pmd_offset(pud, dst_addr); 239 if (pmd_none(*pmd)) { 240 pte = allocator(mask); 241 if (!pte) { 242 rc = -ENOMEM; 243 goto out; 244 } 245 pmd_populate_kernel(&init_mm, pmd, pte); 246 } 247 248 pte = pte_offset_kernel(pmd, dst_addr); 249 set_pte(pte, __pte(virt_to_phys((void *)dst) | 250 pgprot_val(PAGE_KERNEL_EXEC))); 251 252 /* 253 * Load our new page tables. A strict BBM approach requires that we 254 * ensure that TLBs are free of any entries that may overlap with the 255 * global mappings we are about to install. 256 * 257 * For a real hibernate/resume cycle TTBR0 currently points to a zero 258 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 259 * runtime services), while for a userspace-driven test_resume cycle it 260 * points to userspace page tables (and we must point it at a zero page 261 * ourselves). Elsewhere we only (un)install the idmap with preemption 262 * disabled, so T0SZ should be as required regardless. 263 */ 264 cpu_set_reserved_ttbr0(); 265 local_flush_tlb_all(); 266 write_sysreg(virt_to_phys(pgd), ttbr0_el1); 267 isb(); 268 269 *phys_dst_addr = virt_to_phys((void *)dst); 270 271 out: 272 return rc; 273 } 274 275 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 276 277 int swsusp_arch_suspend(void) 278 { 279 int ret = 0; 280 unsigned long flags; 281 struct sleep_stack_data state; 282 283 if (cpus_are_stuck_in_kernel()) { 284 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 285 return -EBUSY; 286 } 287 288 local_dbg_save(flags); 289 290 if (__cpu_suspend_enter(&state)) { 291 /* make the crash dump kernel image visible/saveable */ 292 crash_prepare_suspend(); 293 294 sleep_cpu = smp_processor_id(); 295 ret = swsusp_save(); 296 } else { 297 /* Clean kernel core startup/idle code to PoC*/ 298 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 299 dcache_clean_range(__idmap_text_start, __idmap_text_end); 300 301 /* Clean kvm setup code to PoC? */ 302 if (el2_reset_needed()) 303 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 304 305 /* make the crash dump kernel image protected again */ 306 crash_post_resume(); 307 308 /* 309 * Tell the hibernation core that we've just restored 310 * the memory 311 */ 312 in_suspend = 0; 313 314 sleep_cpu = -EINVAL; 315 __cpu_suspend_exit(); 316 } 317 318 local_dbg_restore(flags); 319 320 return ret; 321 } 322 323 static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr) 324 { 325 pte_t pte = *src_pte; 326 327 if (pte_valid(pte)) { 328 /* 329 * Resume will overwrite areas that may be marked 330 * read only (code, rodata). Clear the RDONLY bit from 331 * the temporary mappings we use during restore. 332 */ 333 set_pte(dst_pte, pte_mkwrite(pte)); 334 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 335 /* 336 * debug_pagealloc will removed the PTE_VALID bit if 337 * the page isn't in use by the resume kernel. It may have 338 * been in use by the original kernel, in which case we need 339 * to put it back in our copy to do the restore. 340 * 341 * Before marking this entry valid, check the pfn should 342 * be mapped. 343 */ 344 BUG_ON(!pfn_valid(pte_pfn(pte))); 345 346 set_pte(dst_pte, pte_mkpresent(pte_mkwrite(pte))); 347 } 348 } 349 350 static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start, 351 unsigned long end) 352 { 353 pte_t *src_pte; 354 pte_t *dst_pte; 355 unsigned long addr = start; 356 357 dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC); 358 if (!dst_pte) 359 return -ENOMEM; 360 pmd_populate_kernel(&init_mm, dst_pmd, dst_pte); 361 dst_pte = pte_offset_kernel(dst_pmd, start); 362 363 src_pte = pte_offset_kernel(src_pmd, start); 364 do { 365 _copy_pte(dst_pte, src_pte, addr); 366 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 367 368 return 0; 369 } 370 371 static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start, 372 unsigned long end) 373 { 374 pmd_t *src_pmd; 375 pmd_t *dst_pmd; 376 unsigned long next; 377 unsigned long addr = start; 378 379 if (pud_none(*dst_pud)) { 380 dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC); 381 if (!dst_pmd) 382 return -ENOMEM; 383 pud_populate(&init_mm, dst_pud, dst_pmd); 384 } 385 dst_pmd = pmd_offset(dst_pud, start); 386 387 src_pmd = pmd_offset(src_pud, start); 388 do { 389 next = pmd_addr_end(addr, end); 390 if (pmd_none(*src_pmd)) 391 continue; 392 if (pmd_table(*src_pmd)) { 393 if (copy_pte(dst_pmd, src_pmd, addr, next)) 394 return -ENOMEM; 395 } else { 396 set_pmd(dst_pmd, 397 __pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY)); 398 } 399 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 400 401 return 0; 402 } 403 404 static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start, 405 unsigned long end) 406 { 407 pud_t *dst_pud; 408 pud_t *src_pud; 409 unsigned long next; 410 unsigned long addr = start; 411 412 if (pgd_none(*dst_pgd)) { 413 dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC); 414 if (!dst_pud) 415 return -ENOMEM; 416 pgd_populate(&init_mm, dst_pgd, dst_pud); 417 } 418 dst_pud = pud_offset(dst_pgd, start); 419 420 src_pud = pud_offset(src_pgd, start); 421 do { 422 next = pud_addr_end(addr, end); 423 if (pud_none(*src_pud)) 424 continue; 425 if (pud_table(*(src_pud))) { 426 if (copy_pmd(dst_pud, src_pud, addr, next)) 427 return -ENOMEM; 428 } else { 429 set_pud(dst_pud, 430 __pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY)); 431 } 432 } while (dst_pud++, src_pud++, addr = next, addr != end); 433 434 return 0; 435 } 436 437 static int copy_page_tables(pgd_t *dst_pgd, unsigned long start, 438 unsigned long end) 439 { 440 unsigned long next; 441 unsigned long addr = start; 442 pgd_t *src_pgd = pgd_offset_k(start); 443 444 dst_pgd = pgd_offset_raw(dst_pgd, start); 445 do { 446 next = pgd_addr_end(addr, end); 447 if (pgd_none(*src_pgd)) 448 continue; 449 if (copy_pud(dst_pgd, src_pgd, addr, next)) 450 return -ENOMEM; 451 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 452 453 return 0; 454 } 455 456 /* 457 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 458 * 459 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 460 * we don't need to free it here. 461 */ 462 int swsusp_arch_resume(void) 463 { 464 int rc = 0; 465 void *zero_page; 466 size_t exit_size; 467 pgd_t *tmp_pg_dir; 468 phys_addr_t phys_hibernate_exit; 469 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 470 void *, phys_addr_t, phys_addr_t); 471 472 /* 473 * Restoring the memory image will overwrite the ttbr1 page tables. 474 * Create a second copy of just the linear map, and use this when 475 * restoring. 476 */ 477 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 478 if (!tmp_pg_dir) { 479 pr_err("Failed to allocate memory for temporary page tables.\n"); 480 rc = -ENOMEM; 481 goto out; 482 } 483 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 484 if (rc) 485 goto out; 486 487 /* 488 * We need a zero page that is zero before & after resume in order to 489 * to break before make on the ttbr1 page tables. 490 */ 491 zero_page = (void *)get_safe_page(GFP_ATOMIC); 492 if (!zero_page) { 493 pr_err("Failed to allocate zero page.\n"); 494 rc = -ENOMEM; 495 goto out; 496 } 497 498 /* 499 * Locate the exit code in the bottom-but-one page, so that *NULL 500 * still has disastrous affects. 501 */ 502 hibernate_exit = (void *)PAGE_SIZE; 503 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 504 /* 505 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 506 * a new set of ttbr0 page tables and load them. 507 */ 508 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 509 (unsigned long)hibernate_exit, 510 &phys_hibernate_exit, 511 (void *)get_safe_page, GFP_ATOMIC); 512 if (rc) { 513 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 514 goto out; 515 } 516 517 /* 518 * The hibernate exit text contains a set of el2 vectors, that will 519 * be executed at el2 with the mmu off in order to reload hyp-stub. 520 */ 521 __flush_dcache_area(hibernate_exit, exit_size); 522 523 /* 524 * KASLR will cause the el2 vectors to be in a different location in 525 * the resumed kernel. Load hibernate's temporary copy into el2. 526 * 527 * We can skip this step if we booted at EL1, or are running with VHE. 528 */ 529 if (el2_reset_needed()) { 530 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 531 el2_vectors += hibernate_el2_vectors - 532 __hibernate_exit_text_start; /* offset */ 533 534 __hyp_set_vectors(el2_vectors); 535 } 536 537 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 538 resume_hdr.reenter_kernel, restore_pblist, 539 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 540 541 out: 542 return rc; 543 } 544 545 int hibernate_resume_nonboot_cpu_disable(void) 546 { 547 if (sleep_cpu < 0) { 548 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 549 return -ENODEV; 550 } 551 552 return freeze_secondary_cpus(sleep_cpu); 553 } 554